These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 29955988)

  • 1. Arctic plant ecophysiology and water source utilization in response to altered snow: isotopic (δ
    Jespersen RG; Leffler AJ; Oberbauer SF; Welker JM
    Oecologia; 2018 Aug; 187(4):1009-1023. PubMed ID: 29955988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, Northern Alaska.
    Pattison RR; Welker JM
    Oecologia; 2014 Feb; 174(2):339-50. PubMed ID: 24052332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant phenological responses to a long-term experimental extension of growing season and soil warming in the tussock tundra of Alaska.
    Khorsand Rosa R; Oberbauer SF; Starr G; Parker La Puma I; Pop E; Ahlquist L; Baldwin T
    Glob Chang Biol; 2015 Dec; 21(12):4520-32. PubMed ID: 26183112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra.
    Leffler AJ; Klein ES; Oberbauer SF; Welker JM
    Oecologia; 2016 May; 181(1):287-97. PubMed ID: 26747269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Greater deciduous shrub abundance extends tundra peak season and increases modeled net CO2 uptake.
    Sweet SK; Griffin KL; Steltzer H; Gough L; Boelman NT
    Glob Chang Biol; 2015 Jun; 21(6):2394-409. PubMed ID: 25556338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What if plant functional types conceal species-specific responses to environment? Study on arctic shrub communities.
    Saccone P; Hoikka K; Virtanen R
    Ecology; 2017 Jun; 98(6):1600-1612. PubMed ID: 28317109
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.
    McLaren JR; Buckeridge KM; van de Weg MJ; Shaver GR; Schimel JP; Gough L
    Ecology; 2017 May; 98(5):1361-1376. PubMed ID: 28263375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition.
    DeMarco J; Mack MC; Bret-Harte MS
    Ecology; 2014 Jul; 95(7):1861-75. PubMed ID: 25163119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO
    Christiansen CT; Lafreniére MJ; Henry GHR; Grogan P
    Glob Chang Biol; 2018 Aug; 24(8):3508-3525. PubMed ID: 29411950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NDVI changes in the Arctic: Functional significance in the moist acidic tundra of Northern Alaska.
    Jespersen RG; Anderson-Smith M; Sullivan PF; Dial RJ; Welker JM
    PLoS One; 2023; 18(4):e0285030. PubMed ID: 37115765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arctic shrub growth trajectories differ across soil moisture levels.
    Ackerman D; Griffin D; Hobbie SE; Finlay JC
    Glob Chang Biol; 2017 Oct; 23(10):4294-4302. PubMed ID: 28267242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leaf anatomy, BVOC emission and CO2 exchange of arctic plants following snow addition and summer warming.
    Schollert M; Kivimäenpää M; Michelsen A; Blok D; Rinnan R
    Ann Bot; 2017 Feb; 119(3):433-445. PubMed ID: 28064192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.
    Swanson DK
    PLoS One; 2015; 10(9):e0138387. PubMed ID: 26379243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of Arctic Shrubs on Root Traits and Belowground Nutrient Cycles Across a Northern Alaskan Climate Gradient.
    Chen W; Tape KD; Euskirchen ES; Liang S; Matos A; Greenberg J; Fraterrigo JM
    Front Plant Sci; 2020; 11():588098. PubMed ID: 33362815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks.
    Euskirchen ES; McGuire AD; Chapin FS; Yi S; Thompson CC
    Ecol Appl; 2009 Jun; 19(4):1022-43. PubMed ID: 19544741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Arctic summer warming tracked by increased Cassiope tetragona growth in the world's northernmost polar desert.
    Weijers S; Buchwal A; Blok D; Löffler J; Elberling B
    Glob Chang Biol; 2017 Nov; 23(11):5006-5020. PubMed ID: 28464494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenology and species determine growing-season albedo increase at the altitudinal limit of shrub growth in the sub-Arctic.
    Williamson SN; Barrio IC; Hik DS; Gamon JA
    Glob Chang Biol; 2016 Nov; 22(11):3621-3631. PubMed ID: 27158930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Winter warming as an important co-driver for Betula nana growth in western Greenland during the past century.
    Hollesen J; Buchwal A; Rachlewicz G; Hansen BU; Hansen MO; Stecher O; Elberling B
    Glob Chang Biol; 2015 Jun; 21(6):2410-23. PubMed ID: 25788025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Winter precipitation and snow accumulation drive the methane sink or source strength of Arctic tussock tundra.
    Blanc-Betes E; Welker JM; Sturchio NC; Chanton JP; Gonzalez-Meler MA
    Glob Chang Biol; 2016 Aug; 22(8):2818-33. PubMed ID: 26851545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.
    Callaghan TV; Björn LO; Chernov Y; Chapin T; Christensen TR; Huntley B; Ims RA; Johansson M; Jolly D; Jonasson S; Matveyeva N; Panikov N; Oechel W; Shaver G
    Ambio; 2004 Nov; 33(7):448-58. PubMed ID: 15573572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.