These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29955998)

  • 1. A tale of ENSO, PDO, and increasing aridity impacts on drought-deciduous shrubs in the Death Valley region.
    Ehleringer JR; Sandquist DR
    Oecologia; 2018 Aug; 187(4):879-895. PubMed ID: 29955998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative ecophysiology of Encelia farinosa and Encelia frutescens : I. energy balance considerations.
    Ehleringer JR
    Oecologia; 1988 Sep; 76(4):553-561. PubMed ID: 28312407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multidecadal records of intrinsic water-use efficiency in the desert shrub
    Driscoll AW; Bitter NQ; Sandquist DR; Ehleringer JR
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18161-18168. PubMed ID: 32719142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic water-use efficiency influences establishment in Encelia farinosa.
    Ehleringer JR; Driscoll AW
    Oecologia; 2022 Jul; 199(3):563-578. PubMed ID: 35819533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resilience of seed production to a severe El Niño-induced drought across functional groups and dispersal types.
    O'Brien MJ; Peréz-Aviles D; Powers JS
    Glob Chang Biol; 2018 Nov; 24(11):5270-5280. PubMed ID: 30080318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shrub persistence and increased grass mortality in response to drought in dryland systems.
    Winkler DE; Belnap J; Hoover D; Reed SC; Duniway MC
    Glob Chang Biol; 2019 Sep; 25(9):3121-3135. PubMed ID: 31025434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a glabrate Encelia farinosa mutant: morphology, ecophysiology, and field observations.
    Ehleringer J
    Oecologia; 1983 Mar; 57(3):303-310. PubMed ID: 28309355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of Encelia species differing in leaf reflectance and transpiration rate under common garden conditions.
    Ehleringer JR; Cook CS
    Oecologia; 1990 Apr; 82(4):484-489. PubMed ID: 28311472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydraulically integrated or modular? Comparing whole-plant-level hydraulic systems between two desert shrub species with different growth forms.
    Espino S; Schenk HJ
    New Phytol; 2009; 183(1):142-152. PubMed ID: 19368668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population- and family-level variation of brittlebush (Encelia farinosa, Asteraceae) pubescence: its relation to drought and implications for selection in variable environments.
    Sandquist DR; Ehleringer JR
    Am J Bot; 2003 Oct; 90(10):1481-6. PubMed ID: 21659100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting responses to water-deficit among Encelia canescens populations distributed along an aridity gradient.
    Carvajal DE; Loayza AP; Squeo FA
    Am J Bot; 2015 Sep; 102(9):1552-7. PubMed ID: 26373975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary history and phylogeography of Encelia farinosa (Asteraceae) from the Sonoran, Mojave, and Peninsular Deserts.
    Fehlberg SD; Ranker TA
    Mol Phylogenet Evol; 2009 Feb; 50(2):326-35. PubMed ID: 19059351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One hundred and six years of change in a Sonoran Desert plant community: Impact of climate anomalies and trends in species sensitivities.
    Brown C; Rodriguez Buritica S; Goldberg DE; Reichenbacher F; Venable DL; Webb RH; Wilder BT
    Ecology; 2024 Mar; 105(3):e4194. PubMed ID: 37882101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon isotope discrimination differences within and between contrasting populations of Encelia farinosa raised under common-environment conditions.
    Sandquist DR; Ehleringer JR
    Oecologia; 2003 Mar; 134(4):463-70. PubMed ID: 12647117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.
    Xie Y; Wang X; Silander JA
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13585-90. PubMed ID: 26483475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Satellite detection of cumulative and lagged effects of drought on autumn leaf senescence over the Northern Hemisphere.
    Peng J; Wu C; Zhang X; Wang X; Gonsamo A
    Glob Chang Biol; 2019 Jun; 25(6):2174-2188. PubMed ID: 30897264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change could threaten cocoa production: Effects of 2015-16 El Niño-related drought on cocoa agroforests in Bahia, Brazil.
    Gateau-Rey L; Tanner EVJ; Rapidel B; Marelli JP; Royaert S
    PLoS One; 2018; 13(7):e0200454. PubMed ID: 29990360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photosynthesis by flowers in Encelia farinosa and Encelia californica (Asteraceae).
    Werk KS; Ehleringer JR
    Oecologia; 1983 Mar; 57(3):311-315. PubMed ID: 28309356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ENSO and PDO-related climate variability impacts on Midwestern United States crop yields.
    Henson C; Market P; Lupo A; Guinan P
    Int J Biometeorol; 2017 May; 61(5):857-867. PubMed ID: 27787628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities.
    Jiménez MA; Jaksic FM; Armesto JJ; Gaxiola A; Meserve PL; Kelt DA; Gutiérrez JR
    Ecol Lett; 2011 Dec; 14(12):1227-35. PubMed ID: 21988736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.