These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29956165)

  • 1. The Use of CRISPR-Cas9 Technology to Reveal Important Aspects of Human Airway Biology.
    Dakhama A; Chu HW
    Methods Mol Biol; 2018; 1799():371-380. PubMed ID: 29956165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of CRISPR-Cas9-mediated genetic knockout human intestinal tissue-derived enteroid lines by lentivirus transduction and single-cell cloning.
    Lin SC; Haga K; Zeng XL; Estes MK
    Nat Protoc; 2022 Apr; 17(4):1004-1027. PubMed ID: 35197604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary Airway Epithelial Cell Gene Editing Using CRISPR-Cas9.
    Everman JL; Rios C; Seibold MA
    Methods Mol Biol; 2018; 1706():267-292. PubMed ID: 29423804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Assembly of CRISPR/Cas9 Lentiviral and rAAV Vectors for Targeted Genome Editing.
    Sandoval IM; Collier TJ; Manfredsson FP
    Methods Mol Biol; 2019; 1937():29-45. PubMed ID: 30706388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Accessible Protocol for the Generation of CRISPR-Cas9 Knockouts Using INDELs in Zebrafish.
    Moravec CE; Pelegri FJ
    Methods Mol Biol; 2019; 1920():377-392. PubMed ID: 30737704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
    Kelkar A; Zhu Y; Groth T; Stolfa G; Stablewski AB; Singhi N; Nemeth M; Neelamegham S
    Mol Ther; 2020 Jan; 28(1):29-41. PubMed ID: 31601489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes.
    Chen S; Lee B; Lee AY; Modzelewski AJ; He L
    J Biol Chem; 2016 Jul; 291(28):14457-67. PubMed ID: 27151215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeted genome editing in a quail cell line using a customized CRISPR/Cas9 system.
    Ahn J; Lee J; Park JY; Oh KB; Hwang S; Lee CW; Lee K
    Poult Sci; 2017 May; 96(5):1445-1450. PubMed ID: 27965404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and Quantitative Identification of Ex Vivo Precise Genome Targeting-Induced Indel Events by IDAA.
    König S; Yang Z; Wandall HH; Mussolino C; Bennett EP
    Methods Mol Biol; 2019; 1961():45-66. PubMed ID: 30912039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Combinational Use of CRISPR/Cas9 and Targeted Toxin Technology Enables Efficient Isolation of Bi-Allelic Knockout Non-Human Mammalian Clones.
    Watanabe S; Sakurai T; Nakamura S; Miyoshi K; Sato M
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29617297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome Editing in Mice Using CRISPR/Cas9 Technology.
    Hall B; Cho A; Limaye A; Cho K; Khillan J; Kulkarni AB
    Curr Protoc Cell Biol; 2018 Dec; 81(1):e57. PubMed ID: 30178917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-Mediated Genome Editing for Huntington's Disease.
    Vachey G; Déglon N
    Methods Mol Biol; 2018; 1780():463-481. PubMed ID: 29856031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing Rice Mutants Using CRISPR/Cas9-Based Genome Editing Technology.
    Xu K; Li Y
    Methods Mol Biol; 2022; 2400():11-19. PubMed ID: 34905186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The novel insight into the outcomes of CRISPR/Cas9 editing intra- and inter-species.
    Chang J; Chen X; Zhang T; Wang R; Wang A; Lan X; Zhou Y; Ma S; Xia Q
    Int J Biol Macromol; 2020 Nov; 163():711-717. PubMed ID: 32652159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of Knock-Out Muscle Cell Lines using Lentivirus-Mediated CRISPR/Cas9 Gene Editing.
    Beaufils M; Tourel A; Petiot A; Halmai NB; Segal DJ; Rendu J; Marty I
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35781470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guidelines for optimized gene knockout using CRISPR/Cas9.
    Campenhout CV; Cabochette P; Veillard AC; Laczik M; Zelisko-Schmidt A; Sabatel C; Dhainaut M; Vanhollebeke B; Gueydan C; Kruys V
    Biotechniques; 2019 Jun; 66(6):295-302. PubMed ID: 31039627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical Control of Genome Editing by Photoactivatable Cas9.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized protocol for gene editing in adipocytes using CRISPR-Cas9 technology.
    Qiu Y; Ding Q
    STAR Protoc; 2021 Mar; 2(1):100307. PubMed ID: 33554142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9 Gene Editing In Vitro and in Retinal Cells In Vivo.
    Benati D; Marigo V; Recchia A
    Methods Mol Biol; 2019; 1834():59-74. PubMed ID: 30324436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells.
    Peng Y; Yang T; Tang X; Chen F; Wang S
    Cell Biochem Biophys; 2020 Mar; 78(1):23-30. PubMed ID: 31875277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.