These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 29956698)

  • 1. Understanding the non-covalent interaction mediated modulations on the electronic structure of quasi-zero-dimensional graphene nanoflakes.
    Sarmah A; Hobza P
    Phys Chem Chem Phys; 2018 Jul; 20(27):18718-18728. PubMed ID: 29956698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphene nanoFlakes with large spin.
    Wang WL; Meng S; Kaxiras E
    Nano Lett; 2008 Jan; 8(1):241-5. PubMed ID: 18052302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of defect types on the electronic and optical properties of graphene nanoflakes physisorbed by ionic liquids.
    Shakourian-Fard M; Kamath G
    Phys Chem Chem Phys; 2017 Feb; 19(6):4383-4395. PubMed ID: 28119976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological frustration in graphene nanoflakes: magnetic order and spin logic devices.
    Wang WL; Yazyev OV; Meng S; Kaxiras E
    Phys Rev Lett; 2009 Apr; 102(15):157201. PubMed ID: 19518670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning molecular orbitals in molecular electronics and spintronics.
    Kim WY; Kim KS
    Acc Chem Res; 2010 Jan; 43(1):111-20. PubMed ID: 19769353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ fabrication of quasi-free-standing epitaxial graphene nanoflakes on gold.
    Leicht P; Zielke L; Bouvron S; Moroni R; Voloshina E; Hammerschmidt L; Dedkov YS; Fonin M
    ACS Nano; 2014 Apr; 8(4):3735-42. PubMed ID: 24694063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface Charge-Transfer Doping of Graphene Nanoflakes Containing Double-Vacancy (5-8-5) and Stone-Wales (55-77) Defects through Molecular Adsorption.
    Shakourian-Fard M; Jamshidi Z; Kamath G
    Chemphyschem; 2016 Oct; 17(20):3289-3299. PubMed ID: 27432283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phthalocyanine-nanocarbon ensembles: from discrete molecular and supramolecular systems to hybrid nanomaterials.
    Bottari G; de la Torre G; Torres T
    Acc Chem Res; 2015 Apr; 48(4):900-10. PubMed ID: 25837299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zero-energy-state-oriented tunability of spin polarization in zigzag-edged bowtie-shaped graphene nanoflakes under an electric field.
    Ge Y; Ji J; Zhang Q; Yuan Z; Jian A; Yang X; Xiao G; Zhang W; Sang S
    Nanotechnology; 2019 Feb; 30(8):085201. PubMed ID: 30523826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Density functional theory based study of molecular interactions, recognition, engineering, and quantum transport in π molecular systems.
    Cho Y; Cho WJ; Youn IS; Lee G; Singh NJ; Kim KS
    Acc Chem Res; 2014 Nov; 47(11):3321-30. PubMed ID: 25338296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling the role of size, edge structure and terminations on the electronic properties of trigonal graphene nanoflakes.
    Shi H; Barnard AS; Snook IK
    Nanotechnology; 2012 Feb; 23(6):065707. PubMed ID: 22248810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dicopper(II) metallacyclophanes as multifunctional magnetic devices: a joint experimental and computational study.
    Castellano M; Ruiz-García R; Cano J; Ferrando-Soria J; Pardo E; Fortea-Pérez FR; Stiriba SE; Julve M; Lloret F
    Acc Chem Res; 2015 Mar; 48(3):510-20. PubMed ID: 25697758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong interface-induced spin-orbit interaction in graphene on WS2.
    Wang Z; Ki DK; Chen H; Berger H; MacDonald AH; Morpurgo AF
    Nat Commun; 2015 Sep; 6():8339. PubMed ID: 26391068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible, opto-mechanically induced spin-switching in a nanoribbon-spiropyran hybrid material.
    Wong BM; Ye SH; O'Bryan G
    Nanoscale; 2012 Feb; 4(4):1321-7. PubMed ID: 22228399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diazonium functionalized graphene: microstructure, electric, and magnetic properties.
    Huang P; Jing L; Zhu H; Gao X
    Acc Chem Res; 2013 Jan; 46(1):43-52. PubMed ID: 23143937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spin-Orbit Coupling Induced Gap in Graphene on Pt(111) with Intercalated Pb Monolayer.
    Klimovskikh II; Otrokov MM; Voroshnin VY; Sostina D; Petaccia L; Di Santo G; Thakur S; Chulkov EV; Shikin AM
    ACS Nano; 2017 Jan; 11(1):368-374. PubMed ID: 28005333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational studies on non-covalent interactions of carbon and boron fullerenes with graphene.
    Manna AK; Pati SK
    Chemphyschem; 2013 Jun; 14(9):1844-52. PubMed ID: 23616400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes.
    Hu W; Lin L; Yang C; Yang J
    J Chem Phys; 2014 Dec; 141(21):214704. PubMed ID: 25481158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong Modulation of Spin Currents in Bilayer Graphene by Static and Fluctuating Proximity Exchange Fields.
    Singh S; Katoch J; Zhu T; Meng KY; Liu T; Brangham JT; Yang F; Flatté ME; Kawakami RK
    Phys Rev Lett; 2017 May; 118(18):187201. PubMed ID: 28524685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.