These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29956712)

  • 1. A synthetic biological quantum optical system.
    Lishchuk A; Kodali G; Mancini JA; Broadbent M; Darroch B; Mass OA; Nabok A; Dutton PL; Hunter CN; Törmä P; Leggett GJ
    Nanoscale; 2018 Jul; 10(27):13064-13073. PubMed ID: 29956712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Turning the challenge of quantum biology on its head: biological control of quantum optical systems.
    Lishchuk A; Vasilev C; Johnson MP; Hunter CN; Törmä P; Leggett GJ
    Faraday Discuss; 2019 Jul; 216(0):57-71. PubMed ID: 31016297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of selective plasmon-exciton coupling in nonradiative energy transfer: donor-selective versus acceptor-selective plexcitons.
    Ozel T; Hernandez-Martinez PL; Mutlugun E; Akin O; Nizamoglu S; Ozel IO; Zhang Q; Xiong Q; Demir HV
    Nano Lett; 2013 Jul; 13(7):3065-72. PubMed ID: 23755992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes.
    Tsargorodska A; Cartron ML; Vasilev C; Kodali G; Mass OA; Baumberg JJ; Dutton PL; Hunter CN; Törmä P; Leggett GJ
    Nano Lett; 2016 Nov; 16(11):6850-6856. PubMed ID: 27689237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Chemical Simulation of the
    Wang Z; Suo B; Yin S; Zou W
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33669551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of complex exciton-phonon coupling on optical absorption and energy transfer of quantum aggregates.
    Roden J; Eisfeld A; Wolff W; Strunz WT
    Phys Rev Lett; 2009 Jul; 103(5):058301. PubMed ID: 19792538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assistance of molecular vibrations on coherent energy transfer in photosynthesis from the view of a quantum heat engine.
    Zhang Z; Wang J
    J Phys Chem B; 2015 Apr; 119(13):4662-7. PubMed ID: 25776946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Converting Plasmonic Light Scattering to Confined Light Absorption and Creating Plexcitons by Coupling a Gold Nano-pyramid Array onto a Silica-Gold Film.
    Zheng P; Kasani S; Wu N
    Nanoscale Horiz; 2019 Mar; 4(2):516-525. PubMed ID: 31463080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems.
    Li JB; Kim NC; Cheng MT; Zhou L; Hao ZH; Wang QQ
    Opt Express; 2012 Jan; 20(2):1856-61. PubMed ID: 22274530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots.
    Passmore BS; Adams DC; Ribaudo T; Wasserman D; Lyon S; Davids P; Chow WW; Shaner EA
    Nano Lett; 2011 Feb; 11(2):338-42. PubMed ID: 21214167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity.
    Fofang NT; Grady NK; Fan Z; Govorov AO; Halas NJ
    Nano Lett; 2011 Apr; 11(4):1556-60. PubMed ID: 21417362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling slot-waveguide cavities for large-scale quantum optical devices.
    Su CH; Hiscocks MP; Gibson BC; Greentree AD; Hollenberg LC; Ladouceur F
    Opt Express; 2011 Mar; 19(7):6354-65. PubMed ID: 21451663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon enhanced light harvesting: multiscale modeling of the FMO protein coupled with gold nanoparticles.
    Andreussi O; Caprasecca S; Cupellini L; Guarnetti-Prandi I; Guido CA; Jurinovich S; Viani L; Mennucci B
    J Phys Chem A; 2015 May; 119(21):5197-206. PubMed ID: 25419640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Directional energy transport in strongly coupled chiral quantum emitter plasmonic nanostructures.
    Gettapola K; Gunapala SD; Premaratne M
    J Phys Condens Matter; 2021 Sep; 33(47):. PubMed ID: 34425568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active control of strong plasmon-exciton coupling in biomimetic pigment-polymer antenna complexes grown by surface-initiated polymerisation from gold nanostructures.
    Lishchuk A; Csányi E; Darroch B; Wilson C; Nabok A; Leggett GJ
    Chem Sci; 2022 Feb; 13(8):2405-2417. PubMed ID: 35310503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dark states and delocalization: Competing effects of quantum coherence on the efficiency of light harvesting systems.
    Hu Z; Engel GS; Alharbi FH; Kais S
    J Chem Phys; 2018 Feb; 148(6):064304. PubMed ID: 29448771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced Intra- and Intermolecular Energy Transfer in Chlorophyll a Dimer.
    Zheng F; Fernandez-Alberti S; Tretiak S; Zhao Y
    J Phys Chem B; 2017 Jun; 121(21):5331-5339. PubMed ID: 28482160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon-Exciton Coupling Using DNA Templates.
    Roller EM; Argyropoulos C; Högele A; Liedl T; Pilo-Pais M
    Nano Lett; 2016 Sep; 16(9):5962-6. PubMed ID: 27531635
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emission lineshapes of the B850 band of light-harvesting 2 (LH2) complex in purple bacteria: a second order time-nonlocal quantum master equation approach.
    Kumar P; Jang S
    J Chem Phys; 2013 Apr; 138(13):135101. PubMed ID: 23574256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QM/MM modeling of environmental effects on electronic transitions of the FMO complex.
    Gao J; Shi WJ; Ye J; Wang X; Hirao H; Zhao Y
    J Phys Chem B; 2013 Apr; 117(13):3488-95. PubMed ID: 23480507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.