These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29957291)

  • 21. Thermal hydrolysis of sewage sludge: Improvement in biogas generation and prediction of global warming potential.
    Singh DK; Garg A
    Waste Manag Res; 2024 Jan; 42(1):51-58. PubMed ID: 37211809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The neglected effects of polysaccharide transformation on sludge humification during anaerobic digestion with thermal hydrolysis pretreatment.
    Gao J; Li L; Yuan S; Chen S; Dong B
    Water Res; 2022 Nov; 226():119249. PubMed ID: 36323201
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of different thermal pretreatments on the biodegradability and bioaccessibility of sewage sludge.
    Zhang Y; Xu S; Cui M; Wong JWC
    Waste Manag; 2019 Jul; 94():68-76. PubMed ID: 31279397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced dewaterability of sludge during anaerobic digestion with thermal hydrolysis pretreatment: New insights through structure evolution.
    Zhang J; Li N; Dai X; Tao W; Jenkinson IR; Li Z
    Water Res; 2018 Mar; 131():177-185. PubMed ID: 29281811
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conventional heating vs. microwave sludge pretreatment comparison under identical heating/cooling profiles for thermophilic advanced anaerobic digestion.
    Hosseini Koupaie E; Eskicioglu C
    Waste Manag; 2016 Jul; 53():182-95. PubMed ID: 27160636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comprehensive role of thermal combined ultrasonic pre-treatment in sewage sludge disposal.
    Liu H; Wang X; Qin S; Lai W; Yang X; Xu S; Lichtfouse E
    Sci Total Environ; 2021 Oct; 789():147862. PubMed ID: 34052489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduction of refractory Maillard reaction products by Fe
    Geng YK; Zhou Y
    J Hazard Mater; 2022 May; 430():128400. PubMed ID: 35149502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Destroying lignocellulosic matters for enhancing methane production from excess sludge.
    Hao X; Hu Y; Cao D
    Environ Technol; 2016; 37(5):623-9. PubMed ID: 26215289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved hydrolysis of sewage sludge by air-assisted non-thermal plasma for enhanced biomethane recovery.
    Ortiz Vanegas GO; Kim HW
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28814-28826. PubMed ID: 38561541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Enhancement of sewage sludge anaerobic digestibility by thermal hydrolysis pretreatment].
    Wang ZJ; Wang W
    Huan Jing Ke Xue; 2005 Jan; 26(1):68-71. PubMed ID: 15859411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of low temperature of thermal pretreatment on anaerobic digestion of textile dyeing sludge.
    Chen X; Xiang X; Dai R; Wang Y; Ma P
    Bioresour Technol; 2017 Nov; 243():426-432. PubMed ID: 28688325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does the combined free nitrous acid and electrochemical pretreatment increase methane productivity by provoking sludge solubilization and hydrolysis?
    Niu C; Zhang Z; Pan Y; Tan Y; Lu X; Zhen G
    Bioresour Technol; 2020 May; 304():123006. PubMed ID: 32078903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of stepwise thermal hydrolysis and solid-liquid separation on three different sludge organic matter solubilization and biodegradability.
    Yang D; Dai X; Song L; Dai L; Dong B
    Bioresour Technol; 2019 Oct; 290():121753. PubMed ID: 31323507
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Waste activated sludge lysate treatment: Resource recovery and refractory organics degradation.
    Wang H; Liu W; Haider MR; Ju F; Yu Z; Shi Y; Cai W; Wang A
    J Hazard Mater; 2021 Aug; 416():126206. PubMed ID: 34492968
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Improved methane production from waste activated sludge with low organic content by alkaline pretreatment at pH 10.
    Feng LY; Yang LQ; Zhang LX; Chen HL; Chen J
    Water Sci Technol; 2013; 68(7):1591-8. PubMed ID: 24135109
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production.
    Ye C; Yuan H; Dai X; Lou Z; Zhu N
    Environ Technol; 2016 Nov; 37(22):2935-44. PubMed ID: 27058022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of steam explosion on physicochemical properties of waste activated sludge and the performance of anaerobic digestion.
    Zhang Y; Han P; Liu H; Zhang L; Liu H; Fu B
    Water Sci Technol; 2018 Jun; 77(11-12):2687-2698. PubMed ID: 29944133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of two advanced anaerobic digestions of sewage sludge with high-temperature thermal pretreatment and low-temperature thermal-alkaline pretreatment.
    Xiao B; Tang X; Yi H; Dong L; Han Y; Liu J
    Bioresour Technol; 2020 May; 304():122979. PubMed ID: 32078902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biostimulants in dissolved organic matters recovered from anaerobic digestion sludge with alkali-hydrothermal treatment: Nontarget identification by ultrahigh-resolution mass spectrometry.
    Du Z; Zhao P; Fu Q; Wang Q; Hu A; Zhang W; Wang D
    Environ Int; 2023 Mar; 173():107813. PubMed ID: 36805157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pretreatment of a primary and secondary sludge blend at different thermal hydrolysis temperatures: Impacts on anaerobic digestion, dewatering and filtrate characteristics.
    Higgins MJ; Beightol S; Mandahar U; Suzuki R; Xiao S; Lu HW; Le T; Mah J; Pathak B; DeClippeleir H; Novak JT; Al-Omari A; Murthy SN
    Water Res; 2017 Oct; 122():557-569. PubMed ID: 28628878
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.