These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29957331)

  • 1. Interlayer electrical resistivity of rotated graphene layers studied by in-situ scanning electron microscopy.
    Li H; Wei X; Wu G; Gao S; Chen Q; Peng LM
    Ultramicroscopy; 2018 Oct; 193():90-96. PubMed ID: 29957331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resistivity of Rotated Graphite-Graphene Contacts.
    Chari T; Ribeiro-Palau R; Dean CR; Shepard K
    Nano Lett; 2016 Jul; 16(7):4477-82. PubMed ID: 27243333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breakdown of the interlayer coherence in twisted bilayer graphene.
    Kim Y; Yun H; Nam SG; Son M; Lee DS; Kim DC; Seo S; Choi HC; Lee HJ; Lee SW; Kim JS
    Phys Rev Lett; 2013 Mar; 110(9):096602. PubMed ID: 23496735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coherent commensurate electronic states at the interface between misoriented graphene layers.
    Koren E; Leven I; Lörtscher E; Knoll A; Hod O; Duerig U
    Nat Nanotechnol; 2016 Sep; 11(9):752-7. PubMed ID: 27271963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding.
    Zhang X; Gao Y; Chen Y; Hu M
    Sci Rep; 2016 Feb; 6():22011. PubMed ID: 26911859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational disorder in twisted bilayer graphene.
    Beechem TE; Ohta T; Diaconescu B; Robinson JT
    ACS Nano; 2014 Feb; 8(2):1655-63. PubMed ID: 24460413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Raman spectroscopy study of rotated double-layer graphene: misorientation-angle dependence of electronic structure.
    Kim K; Coh S; Tan LZ; Regan W; Yuk JM; Chatterjee E; Crommie MF; Cohen ML; Louie SG; Zettl A
    Phys Rev Lett; 2012 Jun; 108(24):246103. PubMed ID: 23004295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene.
    Mihnev MT; Tolsma JR; Divin CJ; Sun D; Asgari R; Polini M; Berger C; de Heer WA; MacDonald AH; Norris TB
    Nat Commun; 2015 Sep; 6():8105. PubMed ID: 26399955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large changes of graphene conductance as a function of lattice orientation between stacked layers.
    Lee H; Qi Y; Kwon S; Salmeron M; Young Park J
    Nanotechnology; 2015 Jan; 26(1):015702. PubMed ID: 25484106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interlayer Friction and Superlubricity in Single-Crystalline Contact Enabled by Two-Dimensional Flake-Wrapped Atomic Force Microscope Tips.
    Liu Y; Song A; Xu Z; Zong R; Zhang J; Yang W; Wang R; Hu Y; Luo J; Ma T
    ACS Nano; 2018 Aug; 12(8):7638-7646. PubMed ID: 30060665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensional dependence of phonon transport in freestanding atomic layer systems.
    Kim D; Hwangbo Y; Zhu L; Mag-Isa AE; Kim KS; Kim JH
    Nanoscale; 2013 Dec; 5(23):11870-5. PubMed ID: 24126813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Observation of Thermal Proton Transport through Graphene Layers.
    Zhu D; Liu X; Gao Y; Li Y; Wang R; Xu Z; Ji G; Jiang S; Zhao B; Yin G; Li L; Yang T; Wang Y; Yi L; Li X; Tai R
    ACS Nano; 2017 Sep; 11(9):8970-8977. PubMed ID: 28787120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals.
    Li X; Basile L; Yoon M; Ma C; Puretzky AA; Lee J; Idrobo JC; Chi M; Rouleau CM; Geohegan DB; Xiao K
    Angew Chem Int Ed Engl; 2015 Feb; 54(9):2712-7. PubMed ID: 25611050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abnormal conductivity in low-angle twisted bilayer graphene.
    Zhang S; Song A; Chen L; Jiang C; Chen C; Gao L; Hou Y; Liu L; Ma T; Wang H; Feng XQ; Li Q
    Sci Adv; 2020 Nov; 6(47):. PubMed ID: 33219028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic layer oxidation on graphene sheets for tuning their oxidation levels, electrical conductivities, and band gaps.
    Gu S; Hsieh CT; Lin TW; Yuan CY; Ashraf Gandomi Y; Chang JK; Li J
    Nanoscale; 2018 Aug; 10(33):15521-15528. PubMed ID: 30102311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K.
    Kwolek EJ; Lei H; Lii-Rosales A; Wallingford M; Zhou Y; Wang CZ; Tringides MC; Evans JW; Thiel PA
    J Chem Phys; 2016 Dec; 145(21):211902. PubMed ID: 28799402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large hexagonal bi- and trilayer graphene single crystals with varied interlayer rotations.
    Yan Z; Liu Y; Ju L; Peng Z; Lin J; Wang G; Zhou H; Xiang C; Samuel EL; Kittrell C; Artyukhov VI; Wang F; Yakobson BI; Tour JM
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1565-9. PubMed ID: 24453109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ formation of co particles encapsulated by graphene layers.
    Lee M; Kim G; Jeong GH; Yoon A; Lee Z; Ryu GH
    Appl Microsc; 2022 Jul; 52(1):7. PubMed ID: 35831511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Twist Angle-Dependent Molecular Intercalation and Sheet Resistance in Bilayer Graphene.
    Araki Y; Solís-Fernández P; Lin YC; Motoyama A; Kawahara K; Maruyama M; Gao Y; Matsumoto R; Suenaga K; Okada S; Ago H
    ACS Nano; 2022 Sep; 16(9):14075-14085. PubMed ID: 35921093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.