These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
401 related articles for article (PubMed ID: 29957377)
1. Permeability and fluid flow-induced wall shear stress of bone tissue scaffolds: Computational fluid dynamic analysis using Newtonian and non-Newtonian blood flow models. Ali D; Sen S Comput Biol Med; 2018 Aug; 99():201-208. PubMed ID: 29957377 [TBL] [Abstract][Full Text] [Related]
2. Finite element analysis of mechanical behavior, permeability and fluid induced wall shear stress of high porosity scaffolds with gyroid and lattice-based architectures. Ali D; Sen S J Mech Behav Biomed Mater; 2017 Nov; 75():262-270. PubMed ID: 28759838 [TBL] [Abstract][Full Text] [Related]
3. Computational Fluid Dynamics Study of the Effects of Surface Roughness on Permeability and Fluid Flow-Induced Wall Shear Stress in Scaffolds. Ali D; Sen S Ann Biomed Eng; 2018 Dec; 46(12):2023-2035. PubMed ID: 30030771 [TBL] [Abstract][Full Text] [Related]
4. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529 [TBL] [Abstract][Full Text] [Related]
5. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438 [TBL] [Abstract][Full Text] [Related]
6. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Frolov SV; Sindeev SV; Liepsch D; Balasso A Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725 [TBL] [Abstract][Full Text] [Related]
7. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery. Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633 [TBL] [Abstract][Full Text] [Related]
8. Study of the effect of stenosis severity and non-Newtonian viscosity on multidirectional wall shear stress and flow disturbances in the carotid artery using particle image velocimetry. DiCarlo AL; Holdsworth DW; Poepping TL Med Eng Phys; 2019 Mar; 65():8-23. PubMed ID: 30745099 [TBL] [Abstract][Full Text] [Related]
9. Numerical investigation of different viscosity models on pulsatile blood flow of thoracic aortic aneurysm (TAA) in a patient-specific model. Faraji A; Sahebi M; SalavatiDezfouli S Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):986-998. PubMed ID: 35882063 [TBL] [Abstract][Full Text] [Related]
10. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study. Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643 [TBL] [Abstract][Full Text] [Related]
11. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. Evju Ø; Valen-Sendstad K; Mardal KA J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744 [TBL] [Abstract][Full Text] [Related]
12. Numerical simulation of non-Newtonian blood flow dynamics in human thoracic aorta. Caballero AD; Laín S Comput Methods Biomech Biomed Engin; 2015 Aug; 18(11):1200-1216. PubMed ID: 24559110 [TBL] [Abstract][Full Text] [Related]
13. Influence of non-Newtonian behavior of blood on flow in an elastic artery model. Dutta A; Tarbell JM J Biomech Eng; 1996 Feb; 118(1):111-9. PubMed ID: 8833082 [TBL] [Abstract][Full Text] [Related]
14. Orthopedic Scaffolds: Evaluation of Structural Strength and Permeability of Fluid Flow via an Open Cell Neovius Structure for Bone Tissue Engineering. Singh S; Yadav SK; Meena VK; Vashisth P; Kalyanasundaram D ACS Biomater Sci Eng; 2023 Oct; 9(10):5900-5911. PubMed ID: 37702616 [TBL] [Abstract][Full Text] [Related]
15. Accurate prediction of wall shear stress in a stented artery: newtonian versus non-newtonian models. Mejia J; Mongrain R; Bertrand OF J Biomech Eng; 2011 Jul; 133(7):074501. PubMed ID: 21823750 [TBL] [Abstract][Full Text] [Related]
16. Evidence for non-Newtonian behavior of intracranial blood flow from Doppler ultrasonography measurements. Saqr KM; Mansour O; Tupin S; Hassan T; Ohta M Med Biol Eng Comput; 2019 May; 57(5):1029-1036. PubMed ID: 30523533 [TBL] [Abstract][Full Text] [Related]
17. Computational approach to estimating the effects of blood properties on changes in intra-stent flow. Benard N; Perrault R; Coisne D Ann Biomed Eng; 2006 Aug; 34(8):1259-71. PubMed ID: 16799830 [TBL] [Abstract][Full Text] [Related]
18. Assessing the effect of manufacturing defects and non-Newtonian blood model on flow behaviors of additively manufactured Gyroid TPMS structures. Seehanam S; Chanchareon W; Promoppatum P Heliyon; 2023 May; 9(5):e15711. PubMed ID: 37180920 [TBL] [Abstract][Full Text] [Related]
19. Effect of anticoagulant treatment in deep vein thrombosis: A patient-specific computational fluid dynamics study. Fortuny G; Herrero J; Puigjaner D; Olivé C; Marimon F; Garcia-Bennett J; Rodríguez D J Biomech; 2015 Jul; 48(10):2047-53. PubMed ID: 25917201 [TBL] [Abstract][Full Text] [Related]
20. Darcian permeability constant as indicator for shear stresses in regular scaffold systems for tissue engineering. Vossenberg P; Higuera GA; van Straten G; van Blitterswijk CA; van Boxtel AJ Biomech Model Mechanobiol; 2009 Dec; 8(6):499-507. PubMed ID: 19360445 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]