These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 29957418)

  • 1. Effects of population density of a village and town system on the transportation cost for a biomass combined heat and power plant.
    Zhang Y; Qin C; Liu Y
    J Environ Manage; 2018 Oct; 223():444-451. PubMed ID: 29957418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the distribution density of a biomass combined heat and power plant network on heat utilisation efficiency in village-town systems.
    Zhang Y; Kang J
    J Environ Manage; 2017 Nov; 202(Pt 1):21-28. PubMed ID: 28715678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of biomass raw material collection distance on energy surplus factor.
    Ma C; Zhang Y; Ma K
    J Environ Manage; 2022 Sep; 317():115461. PubMed ID: 35751263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance evaluation of adding ethanol production into an existing combined heat and power plant.
    Starfelt F; Thorin E; Dotzauer E; Yan J
    Bioresour Technol; 2010 Jan; 101(2):613-8. PubMed ID: 19758800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustainability assessment of the whole biomass-to-energy chain of a combined heat and power plant based on biomass gasification: biomass supply chain management and life cycle assessment.
    Costa M; Piazzullo D; Di Battista D; De Vita A
    J Environ Manage; 2022 Sep; 317():115434. PubMed ID: 35751252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the differences in collection scope of raw materials of biomass CHP plants caused by regional factors.
    Wang Q; Zhang Y; Ma K
    J Environ Manage; 2024 Jun; 360():121106. PubMed ID: 38739996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Annual performance analysis and comparison of pellet production integrated with an existing combined heat and power plant.
    Song H; Dotzauer E; Thorin E; Yan J
    Bioresour Technol; 2011 May; 102(10):6317-25. PubMed ID: 21377354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of CO(2)-emissions by using biomass in combustion and digestion plants.
    Hoffmann G; Schingnitz D; Schnapke A; Bilitewski B
    Waste Manag; 2010 May; 30(5):893-901. PubMed ID: 20060281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental sustainability of integrating the organic Rankin cycle with anaerobic digestion and combined heat and power generation.
    Bacenetti J; Fusi A; Azapagic A
    Sci Total Environ; 2019 Mar; 658():684-696. PubMed ID: 30678020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of a residual biomass micro-combined heat and power system based on an organic Rankine Cycle coupled to a boiler.
    Villarino YT; Rial LP; Rodríguez-Abalde Á
    J Environ Manage; 2022 Jan; 301():113832. PubMed ID: 34624578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat, electricity, or transportation? The optimal use of residual and waste biomass in Europe from an environmental perspective.
    Steubing B; Zah R; Ludwig C
    Environ Sci Technol; 2012 Jan; 46(1):164-71. PubMed ID: 22091634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process modelling of biomass conversion to biofuels with combined heat and power.
    Sharma A; Shinde Y; Pareek V; Zhang D
    Bioresour Technol; 2015 Dec; 198():309-15. PubMed ID: 26402874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opportunities and Challenges in the Design and Analysis of Biomass Supply Chains.
    Lautala PT; Hilliard MR; Webb E; Busch I; Richard Hess J; Roni MS; Hilbert J; Handler RM; Bittencourt R; Valente A; Laitinen T
    Environ Manage; 2015 Dec; 56(6):1397-415. PubMed ID: 26122631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relative cost of biomass energy transport.
    Searcy E; Flynn P; Ghafoori E; Kumar A
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):639-52. PubMed ID: 18478422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass transportation model and optimum plant size for the production of ethanol.
    Leboreiro J; Hilaly AK
    Bioresour Technol; 2011 Feb; 102(3):2712-23. PubMed ID: 21109426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy.
    Riva C; Schievano A; D'Imporzano G; Adani F
    Waste Manag; 2014 Aug; 34(8):1429-35. PubMed ID: 24841069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass logistics analysis for large scale biofuel production: case study of loblolly pine and switchgrass.
    Lu X; Withers MR; Seifkar N; Field RP; Barrett SR; Herzog HJ
    Bioresour Technol; 2015 May; 183():1-9. PubMed ID: 25710677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaling laws and technology development strategies for biorefineries and bioenergy plants.
    Jack MW
    Bioresour Technol; 2009 Dec; 100(24):6324-30. PubMed ID: 19635662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges in scaling up biofuels infrastructure.
    Richard TL
    Science; 2010 Aug; 329(5993):793-6. PubMed ID: 20705852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and economic evaluation of industrial gas production and combined heat and power generation from gasification of corn stover and distillers grains.
    Kumar A; Demirel Y; Jones DD; Hanna MA
    Bioresour Technol; 2010 May; 101(10):3696-701. PubMed ID: 20096571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.