BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 29957427)

  • 21. Responses of Spring Discharge to Different Rainfall Events for Single-Conduit Karst Aquifers in Western Hunan Province, China.
    Chang W; Wan J; Tan J; Wang Z; Jiang C; Huang K
    Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the Gacka River basin karst aquifer (Croatia): hydrochemistry, stable isotopes and tritium-based mean residence times.
    Ozyurt NN; Lutz HO; Hunjak T; Mance D; Roller-Lutz Z
    Sci Total Environ; 2014 Jul; 487():245-54. PubMed ID: 24784749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Karst recharge-discharge semi distributed model to assess spatial variability of flows.
    Ollivier C; Mazzilli N; Olioso A; Chalikakis K; Carrière SD; Danquigny C; Emblanch C
    Sci Total Environ; 2020 Feb; 703():134368. PubMed ID: 31731168
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical study of groundwater flow cycling controlled by seawater/freshwater interaction in a coastal karst aquifer through conduit network using CFPv2.
    Xu Z; Hu BX; Davis H; Kish S
    J Contam Hydrol; 2015 Nov; 182():131-45. PubMed ID: 26387032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical analysis and considerations of the main parameters used to evaluate intrinsic karst groundwater vulnerability to surface pollution.
    Moreno-Gómez M; Liedl R; Stefan C; Pacheco J
    Sci Total Environ; 2024 Jan; 907():167947. PubMed ID: 37865241
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of deep coal mining on groundwater hydrodynamic and hydrochemical processes in a multi-aquifer system: Insights from a long-term study of mining areas in ecologically fragile western China.
    Zhan H; Liu S; Wu Q; Liu W; Shi L; Liu D
    J Contam Hydrol; 2024 Jun; 265():104386. PubMed ID: 38908281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Groundwater vulnerability assessment in agricultural areas using a modified DRASTIC model.
    Sadat-Noori M; Ebrahimi K
    Environ Monit Assess; 2016 Jan; 188(1):19. PubMed ID: 26650205
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Source, variability, and transformation of nitrate in a regional karst aquifer: Edwards aquifer, central Texas.
    Musgrove M; Opsahl SP; Mahler BJ; Herrington C; Sample TL; Banta JR
    Sci Total Environ; 2016 Oct; 568():457-469. PubMed ID: 27314899
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simulation of Regional Karst Aquifer System and Assessment of Groundwater Resources in Manatí-Vega Baja, Puerto Rico.
    Maihemuti B; Ghasemizadeh R; Yu X; Padilla I; Alshawabkeh AN
    J Water Resour Prot; 2015 Aug; 7(12):909-922. PubMed ID: 31131072
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overexploitation assessment in an urban karst aquifer: The case of Sete Lagoas (MG), Brazil.
    Schuch CS; Galvão P; de Melo MC; Pereira S
    Environ Res; 2023 Nov; 236(Pt 2):116820. PubMed ID: 37541417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Origin of spring waters employing a multiparametric approach with special focus on stable isotopes
    Ribeiro C; Velásquez L; Fleming P
    Isotopes Environ Health Stud; 2020 May; 56(2):158-169. PubMed ID: 31957484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport of road salt contamination in karst aquifers and soils over multiple timescales.
    Robinson HK; Hasenmueller EA
    Sci Total Environ; 2017 Dec; 603-604():94-108. PubMed ID: 28623795
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of origin and runoff of karst groundwater in the glacial lake area of the Jinsha River fault zone, China.
    Ma J; Li X; Zhang C; Fu C; Wang Z; Bai Z
    Sci Rep; 2022 Aug; 12(1):14661. PubMed ID: 36038642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coupled hydrogeochemical evaluation of a vulnerable karst aquifer impacted by septic effluent in a protected natural area.
    Yang P; Li Y; Groves C; Hong A
    Sci Total Environ; 2019 Mar; 658():1475-1484. PubMed ID: 30678006
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vulnerability mapping and protection zoning of karst springs. Validation by multitracer tests.
    Marín AI; Andreo B; Mudarra M
    Sci Total Environ; 2015 Nov; 532():435-46. PubMed ID: 26093222
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling hydrogeological parameters to assess groundwater pollution and vulnerability in Kashan aquifer: Novel calibration-validation of multivariate statistical methods and human health risk considerations.
    Samadi J
    Environ Res; 2022 Aug; 211():113028. PubMed ID: 35283077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geographical detection of groundwater pollution vulnerability and hazard in karst areas of Guangxi Province, China.
    Zhu Z; Wang J; Hu M; Jia L
    Environ Pollut; 2019 Feb; 245():627-633. PubMed ID: 30476892
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Groundwater: the processes and global significance of aquifer degradation.
    Foster SS; Chilton PJ
    Philos Trans R Soc Lond B Biol Sci; 2003 Dec; 358(1440):1957-72. PubMed ID: 14728791
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multitracer experiment to evaluate the attenuation of selected organic micropollutants in a karst aquifer.
    Hillebrand O; Nödler K; Sauter M; Licha T
    Sci Total Environ; 2015 Feb; 506-507():338-43. PubMed ID: 25460968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial dynamics in spring water of alpine karst aquifers indicates the presence of stable autochthonous microbial endokarst communities.
    Farnleitner AH; Wilhartitz I; Ryzinska G; Kirschner AK; Stadler H; Burtscher MM; Hornek R; Szewzyk U; Herndl G; Mach RL
    Environ Microbiol; 2005 Aug; 7(8):1248-59. PubMed ID: 16011762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.