These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
828 related articles for article (PubMed ID: 29957531)
21. Polycaprolactone/hydroxyapatite composite scaffolds: preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells. Chuenjitkuntaworn B; Inrung W; Damrongsri D; Mekaapiruk K; Supaphol P; Pavasant P J Biomed Mater Res A; 2010 Jul; 94(1):241-51. PubMed ID: 20166220 [TBL] [Abstract][Full Text] [Related]
22. Efficacy of rhBMP-2 Loaded PCL/ Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530 [TBL] [Abstract][Full Text] [Related]
23. Osteoregenerative Potential of 3D-Printed Poly Lawrence LM; Salary RR; Miller V; Valluri A; Denning KL; Case-Perry S; Abdelgaber K; Smith S; Claudio PP; Day JB Int J Mol Sci; 2023 Mar; 24(5):. PubMed ID: 36902373 [TBL] [Abstract][Full Text] [Related]
24. 3D-printed MgO nanoparticle loaded polycaprolactone β-tricalcium phosphate composite scaffold for bone tissue engineering applications: In-vitro and in-vivo evaluation. Safiaghdam H; Nokhbatolfoghahaei H; Farzad-Mohajeri S; Dehghan MM; Farajpour H; Aminianfar H; Bakhtiari Z; Jabbari Fakhr M; Hosseinzadeh S; Khojasteh A J Biomed Mater Res A; 2023 Mar; 111(3):322-339. PubMed ID: 36334300 [TBL] [Abstract][Full Text] [Related]
25. 3D printed poly(ε-caprolactone) scaffolds modified with hydroxyapatite and poly(propylene fumarate) and their effects on the healing of rabbit femur defects. Buyuksungur S; Endogan Tanir T; Buyuksungur A; Bektas EI; Torun Kose G; Yucel D; Beyzadeoglu T; Cetinkaya E; Yenigun C; Tönük E; Hasirci V; Hasirci N Biomater Sci; 2017 Sep; 5(10):2144-2158. PubMed ID: 28880313 [TBL] [Abstract][Full Text] [Related]
26. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity. Milovac D; Gallego Ferrer G; Ivankovic M; Ivankovic H Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():437-45. PubMed ID: 24268280 [TBL] [Abstract][Full Text] [Related]
27. 3D- Printed Poly(ε-caprolactone) Scaffold Integrated with Cell-laden Chitosan Hydrogels for Bone Tissue Engineering. Dong L; Wang SJ; Zhao XR; Zhu YF; Yu JK Sci Rep; 2017 Oct; 7(1):13412. PubMed ID: 29042614 [TBL] [Abstract][Full Text] [Related]
28. Bone morphogenetic protein-2-encapsulated grafted-poly-lactic acid-polycaprolactone nanoparticles promote bone repair. Xu X; Yang J; Ding L; Li J Cell Biochem Biophys; 2015 Jan; 71(1):215-25. PubMed ID: 25158862 [TBL] [Abstract][Full Text] [Related]
29. Osteogenic potentials in canine mesenchymal stem cells: unraveling the efficacy of polycaprolactone/hydroxyapatite scaffolds in veterinary bone regeneration. Taephatthanasagon T; Purbantoro SD; Rodprasert W; Pathanachai K; Charoenlertkul P; Mahanonda R; Sa-Ard-Lam N; Kuncorojakti S; Soedarmanto A; Jamilah NS; Osathanon T; Sawangmake C; Rattanapuchpong S BMC Vet Res; 2024 Sep; 20(1):403. PubMed ID: 39251976 [TBL] [Abstract][Full Text] [Related]
30. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering. Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029 [TBL] [Abstract][Full Text] [Related]
31. Rotary-jet spun polycaprolactone/nano-hydroxyapatite scaffolds modified by simulated body fluid influenced the flexural mode of the neoformed bone. Vasconcellos LMR; Elias CMV; Minhoto GB; Abdala JMA; Andrade TM; de Araujo JCR; Gusmão SBS; Viana BC; Marciano FR; Lobo AO J Mater Sci Mater Med; 2020 Jul; 31(8):72. PubMed ID: 32719958 [TBL] [Abstract][Full Text] [Related]
32. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects. Qi X; Huang Y; Han D; Zhang J; Cao J; Jin X; Huang J; Li X; Wang T Biomed Mater; 2016 Mar; 11(2):025005. PubMed ID: 26964015 [TBL] [Abstract][Full Text] [Related]
33. Calcium phosphate coated Keratin-PCL scaffolds for potential bone tissue regeneration. Zhao X; Lui YS; Choo CKC; Sow WT; Huang CL; Ng KW; Tan LP; Loo JSC Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():746-753. PubMed ID: 25687004 [TBL] [Abstract][Full Text] [Related]
34. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect. Tian B; Wang N; Jiang Q; Tian L; Hu L; Zhang Z J Mater Sci Mater Med; 2021 Jun; 32(6):63. PubMed ID: 34097140 [TBL] [Abstract][Full Text] [Related]
35. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801 [TBL] [Abstract][Full Text] [Related]
36. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935 [TBL] [Abstract][Full Text] [Related]
37. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells. Rashad A; Mohamed-Ahmed S; Ojansivu M; Berstad K; Yassin MA; Kivijärvi T; Heggset EB; Syverud K; Mustafa K Biomacromolecules; 2018 Nov; 19(11):4307-4319. PubMed ID: 30296827 [TBL] [Abstract][Full Text] [Related]
38. Marine plankton exoskeletone-derived hydroxyapatite/polycaprolactone composite 3D scaffold for bone tissue engineering. Baek JW; Kim KS; Park H; Kim BS Biomater Sci; 2022 Dec; 10(24):7055-7066. PubMed ID: 36285712 [TBL] [Abstract][Full Text] [Related]
39. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis. Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566 [TBL] [Abstract][Full Text] [Related]
40. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties. Biscaia S; Branquinho MV; Alvites RD; Fonseca R; Sousa AC; Pedrosa SS; Caseiro AR; Guedes F; Patrício T; Viana T; Mateus A; Maurício AC; Alves N Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216432 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]