These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29957797)

  • 21. 40  Gb/s indoor optical wireless system enabled by a cyclically arranged optical beamsteering receiver.
    Zhang X; Liu Y; Cao Z; Li F; Li Z; Ismaeel R; Brambilla G; Chen Y; Koonen AMJ
    Opt Lett; 2018 Feb; 43(4):723-726. PubMed ID: 29444062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A 30 Gb/s full-duplex bi-directional transmission optical wireless-over fiber integration system at W-band.
    Tang C; Yu J; Li X; Chi N; Xiao J; Tian Y; Zhang J
    Opt Express; 2014 Jan; 22(1):239-45. PubMed ID: 24514984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Wide field-of-view optical broadcasting for bi-directional indoor optical wireless communications employing PAM-4 modulation.
    Feng F; Sangwongngam P; Faulkner G; O'Brien D
    Opt Lett; 2019 Dec; 44(24):6009-6012. PubMed ID: 32628206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recurrent neural network (RNN) for delay-tolerant repetition-coded (RC) indoor optical wireless communication systems.
    He J; Lee J; Song T; Li H; Kandeepan S; Wang K
    Opt Lett; 2019 Aug; 44(15):3745-3748. PubMed ID: 31368958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Time-slot coding scheme for multiple access in indoor optical wireless communications.
    Liang T; Wang K; Lim C; Wong E; Song T; Nirmalathas A
    Opt Lett; 2016 Nov; 41(22):5166-5169. PubMed ID: 27842084
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Secure multiple access for indoor optical wireless communications with time-slot coding and chaotic phase.
    Liang T; Wang K; Lim C; Wong E; Song T; Nirmalathas A
    Opt Express; 2017 Sep; 25(18):22046-22054. PubMed ID: 29041494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-chip photonic transceiver based on bulk-silicon, as a chip-level photonic I/O platform for optical interconnects.
    Kim G; Park H; Joo J; Jang KS; Kwack MJ; Kim S; Kim IG; Oh JH; Kim SA; Park J; Kim S
    Sci Rep; 2015 Jun; 5():11329. PubMed ID: 26061463
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Indoor optical wireless communication system with filters-enhanced generalized spatial modulation and carrierless amplitude and phase (CAP) modulation.
    Wang K
    Opt Lett; 2020 Sep; 45(18):4980-4983. PubMed ID: 32932432
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experimental demonstration of indoor uplink near-infrared LED camera communication.
    Cahyadi WA; Chung YH
    Opt Express; 2018 Jul; 26(15):19657-19664. PubMed ID: 30114136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silicon photonic integrated circuit swept-source optical coherence tomography receiver with dual polarization, dual balanced, in-phase and quadrature detection.
    Wang Z; Lee HC; Vermeulen D; Chen L; Nielsen T; Park SY; Ghaemi A; Swanson E; Doerr C; Fujimoto J
    Biomed Opt Express; 2015 Jul; 6(7):2562-74. PubMed ID: 26203382
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental demonstration of an indoor optical wireless communication system with a waveform index modulated uplink.
    Wang K; Kandeepan S
    Opt Lett; 2022 Jul; 47(13):3187-3190. PubMed ID: 35776581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices.
    García-Meca C; Lechago S; Brimont A; Griol A; Mas S; Sánchez L; Bellieres L; Losilla NS; Martí J
    Light Sci Appl; 2017 Sep; 6(9):e17053. PubMed ID: 30167296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Beam shaping with tip-tilt varifocal mirror for indoor optical wireless communication.
    Pollock C; Morrison J; Imboden M; Little TDC; Bishop DJ
    Opt Express; 2017 Aug; 25(17):20274-20285. PubMed ID: 29041710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-power optical beam steering by microelectromechanical waveguide gratings.
    Errando-Herranz C; Le Thomas N; Gylfason KB
    Opt Lett; 2019 Feb; 44(4):855-858. PubMed ID: 30768004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated alignment system for optical wireless communication systems using image recognition.
    Brandl P; Weiss A; Zimmermann H
    Opt Lett; 2014 Jul; 39(13):4045-8. PubMed ID: 24978803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Beam steering in a narrow-beam phosphor down-converted white light visible light communication link using transmitter lens decentering.
    Ahmad F; Biswas R; Raghunathan V
    Appl Opt; 2021 Apr; 60(10):2775-2782. PubMed ID: 33798151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organic photovoltaics for simultaneous energy harvesting and high-speed MIMO optical wireless communications.
    Tavakkolnia I; Jagadamma LK; Bian R; Manousiadis PP; Videv S; Turnbull GA; Samuel IDW; Haas H
    Light Sci Appl; 2021 Feb; 10(1):41. PubMed ID: 33623027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization.
    Wang Y; Huang X; Tao L; Shi J; Chi N
    Opt Express; 2015 May; 23(10):13626-33. PubMed ID: 26074612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental demonstration of high-speed free-space reconfigurable card-to-card optical interconnects.
    Wang K; Nirmalathas A; Lim C; Skafidas E; Alameh K
    Opt Express; 2013 Feb; 21(3):2850-61. PubMed ID: 23481743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fully integrated multi-optoelectronic synthesizer for THz pumping source in wireless communications with rich backup redundancy and wide tuning range.
    Xu J; Hou L; Deng Q; Han L; Liang S; Marsh JH; Zhu H
    Sci Rep; 2016 Jul; 6():29084. PubMed ID: 27381281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.