These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
451 related articles for article (PubMed ID: 29957949)
21. Functionalization of La(0.7)Sr(0.3)MnO3 nanoparticles with polymer: studies on enhanced hyperthermia and biocompatibility properties for biomedical applications. Thorat ND; Khot VM; Salunkhe AB; Ningthoujam RS; Pawar SH Colloids Surf B Biointerfaces; 2013 Apr; 104():40-7. PubMed ID: 23298586 [TBL] [Abstract][Full Text] [Related]
22. Magnetic solid lipid nanoparticles in hyperthermia against colon cancer. Muñoz de Escalona M; Sáez-Fernández E; Prados JC; Melguizo C; Arias JL Int J Pharm; 2016 May; 504(1-2):11-9. PubMed ID: 26969080 [TBL] [Abstract][Full Text] [Related]
23. Terbium doped SnO2 nanoparticles as white emitters and SnO2:5Tb/Fe3O4 magnetic luminescent nanohybrids for hyperthermia application and biocompatibility with HeLa cancer cells. Singh LP; Singh NP; Srivastava SK Dalton Trans; 2015 Apr; 44(14):6457-65. PubMed ID: 25747103 [TBL] [Abstract][Full Text] [Related]
24. Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties. Iacovita C; Florea A; Dudric R; Pall E; Moldovan AI; Tetean R; Stiufiuc R; Lucaciu CM Molecules; 2016 Oct; 21(10):. PubMed ID: 27754394 [TBL] [Abstract][Full Text] [Related]
25. Stabilizing Alginate Confinement and Polymer Coating of CO-Releasing Molecules Supported on Iron Oxide Nanoparticles To Trigger the CO Release by Magnetic Heating. Meyer H; Winkler F; Kunz P; Schmidt AM; Hamacher A; Kassack MU; Janiak C Inorg Chem; 2015 Dec; 54(23):11236-46. PubMed ID: 26595858 [TBL] [Abstract][Full Text] [Related]
26. Highly water-dispersible surface-modified Gd(2)O(3) nanoparticles for potential dual-modal bioimaging. Hu Z; Ahrén M; Selegård L; Skoglund C; Söderlind F; Engström M; Zhang X; Uvdal K Chemistry; 2013 Sep; 19(38):12658-67. PubMed ID: 24175343 [TBL] [Abstract][Full Text] [Related]
27. Manganese-Doped Cerium Oxide Nanocomposite Induced Photodynamic Therapy in MCF-7 Cancer Cells and Antibacterial Activity. Atif M; Iqbal S; Fakhar-E-Alam M; Ismail M; Mansoor Q; Mughal L; Aziz MH; Hanif A; Farooq WA Biomed Res Int; 2019; 2019():7156828. PubMed ID: 31662993 [TBL] [Abstract][Full Text] [Related]
28. Induced heat property of polyethyleneglycol-coated iron oxide nanoparticles with dispersion stability for hyperthermia. Jang DH; Lee YI; Kim KS; Park ES; Kang SC; Yoon TJ; Choa YH J Nanosci Nanotechnol; 2013 Sep; 13(9):6098-102. PubMed ID: 24205608 [TBL] [Abstract][Full Text] [Related]
29. Synthesis of Ferromagnetic Fe0.6 Mn0.4 O Nanoflowers as a New Class of Magnetic Theranostic Platform for In Vivo T1 -T2 Dual-Mode Magnetic Resonance Imaging and Magnetic Hyperthermia Therapy. Liu XL; Ng CT; Chandrasekharan P; Yang HT; Zhao LY; Peng E; Lv YB; Xiao W; Fang J; Yi JB; Zhang H; Chuang KH; Bay BH; Ding J; Fan HM Adv Healthc Mater; 2016 Aug; 5(16):2092-104. PubMed ID: 27297640 [TBL] [Abstract][Full Text] [Related]
30. Production of a magnetic nanocomposite for biological and hyperthermia applications based on chitosan-silk fibroin hydrogel incorporated with carbon nitride. Sadat Z; Kashtiaray A; Ganjali F; Aliabadi HAM; Naderi N; Bani MS; Shojaei S; Eivazzadeh-Keihan R; Maleki A; Mahdavi M Int J Biol Macromol; 2024 Nov; 279(Pt 1):135052. PubMed ID: 39182875 [TBL] [Abstract][Full Text] [Related]
31. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
32. Highly Optimized Iron Oxide Embedded Poly(Lactic Acid) Nanocomposites for Effective Magnetic Hyperthermia and Biosecurity. Ryu C; Lee H; Kim H; Hwang S; Hadadian Y; Mohanty A; Park IK; Cho B; Yoon J; Lee JY Int J Nanomedicine; 2022; 17():31-44. PubMed ID: 35023918 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of folate conjugated pegylated thermosensitive magnetic nanocomposites for tumor imaging and therapy. Rastogi R; Gulati N; Kotnala RK; Sharma U; Jayasundar R; Koul V Colloids Surf B Biointerfaces; 2011 Jan; 82(1):160-7. PubMed ID: 20851578 [TBL] [Abstract][Full Text] [Related]
34. Biocompatibility of Mn0.4Zn0.6Fe2O4 Magnetic Nanoparticles and Their Thermotherapy on VX2-Carcinoma-Induced Liver Tumors. Yuan CY; Tang QS; Zhang DS J Nanosci Nanotechnol; 2015 Jan; 15(1):74-84. PubMed ID: 26328307 [TBL] [Abstract][Full Text] [Related]
35. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells. Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952 [TBL] [Abstract][Full Text] [Related]
36. Yttrium-Doped Iron Oxide Nanoparticles for Magnetic Hyperthermia Applications. Kowalik P; Mikulski J; Borodziuk A; Duda M; Kamińska I; Zajdel K; Rybusinski J; Szczytko J; Wojciechowski T; Sobczak K; Minikayev R; Kulpa-Greszta M; Pazik R; Grzaczkowska P; Fronc K; Lapinski M; Frontczak-Baniewicz M; Sikora B J Phys Chem C Nanomater Interfaces; 2020 Mar; 124(12):6871-6883. PubMed ID: 32952770 [TBL] [Abstract][Full Text] [Related]
37. Tailoring the Design of a Lanthanide Complex/Magnetic Ferrite Nanocomposite for Efficient Photoluminescence and Magnetic Hyperthermia Performance. Das A; Mohanty S; Kumar R; Kuanr BK ACS Appl Mater Interfaces; 2020 Sep; 12(37):42016-42029. PubMed ID: 32799438 [TBL] [Abstract][Full Text] [Related]
38. Engineering of stealth (maghemite/PLGA)/chitosan (core/shell)/shell nanocomposites with potential applications for combined MRI and hyperthermia against cancer. Fernández-Álvarez F; Caro C; García-García G; García-Martín ML; Arias JL J Mater Chem B; 2021 Jun; 9(24):4963-4980. PubMed ID: 34114575 [TBL] [Abstract][Full Text] [Related]
39. Thermally Modified Iron-Inserted Calcium Phosphate for Magnetic Hyperthermia in an Acceptable Alternating Magnetic Field. Srinivasan B; Kolanthai E; Eluppai Asthagiri Kumaraswamy N; Jayapalan RR; Vavilapalli DS; Catalani LH; Ningombam GS; Khundrakpam NS; Singh NR; Kalkura SN J Phys Chem B; 2019 Jul; 123(26):5506-5513. PubMed ID: 31244102 [TBL] [Abstract][Full Text] [Related]
40. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Prucek R; Tuček J; Kilianová M; Panáček A; Kvítek L; Filip J; Kolář M; Tománková K; Zbořil R Biomaterials; 2011 Jul; 32(21):4704-13. PubMed ID: 21507482 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]