BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29957959)

  • 1. Solvent Effects on Tuning Pore Structures in Polyimide Aerogels.
    Teo N; Jana SC
    Langmuir; 2018 Jul; 34(29):8581-8590. PubMed ID: 29957959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning Porous Networks in Polyimide Aerogels for Airborne Nanoparticle Filtration.
    Zhai C; Jana SC
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):30074-30082. PubMed ID: 28806054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Evaluation of the Hierarchical Porosity in Polyimide Aerogels and Corresponding Solvated Gels.
    Rinehart SJ; Nguyen BN; Viggiano RP; Meador MAB; Dadmun MD
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30457-30465. PubMed ID: 32538072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dielectric and other properties of polyimide aerogels containing fluorinated blocks.
    Meador MA; McMillon E; Sandberg A; Barrios E; Wilmoth NG; Mueller CH; Miranda FA
    ACS Appl Mater Interfaces; 2014 May; 6(9):6062-8. PubMed ID: 24483208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Synthesis of Methylsilsesquioxane Aerogels with Uniform Mesopores by Microwave Drying.
    Guo X; Shan J; Lei W; Ding R; Zhang Y; Yang H
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergistic hybrid organic-inorganic aerogels.
    Wang X; Jana SC
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6423-9. PubMed ID: 23773123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyimide aerogels with novel bimodal micro and nano porous structure assembly for airborne nano filtering applications.
    Mosanenzadeh SG; Saadatnia Z; Karamikamkar S; Park CB; Naguib HE
    RSC Adv; 2020 Jun; 10(39):22909-22920. PubMed ID: 35520303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and characterization of highly cross-linked polyimide aerogels based on polyimide containing trimethoxysilane side groups.
    Pei X; Zhai W; Zheng W
    Langmuir; 2014 Nov; 30(44):13375-83. PubMed ID: 25340747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of mesoporous structure of aerogels derived from cresol-formaldehyde.
    Li WC; Lu AH; Guo SC
    J Colloid Interface Sci; 2002 Oct; 254(1):153-7. PubMed ID: 12702436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels.
    Meador MA; Alemán CR; Hanson K; Ramirez N; Vivod SL; Wilmoth N; McCorkle L
    ACS Appl Mater Interfaces; 2015 Jan; 7(2):1240-9. PubMed ID: 25564878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Bulky Substituents in the Polymer Backbone on the Properties of Polyimide Aerogels.
    Viggiano RP; Williams JC; Schiraldi DA; Meador MA
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8287-8296. PubMed ID: 28186399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant-Free Process for the Fabrication of Polyimide Aerogel Microparticles.
    Teo N; Jana SC
    Langmuir; 2019 Feb; 35(6):2303-2312. PubMed ID: 30650304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane.
    Guo H; Meador MA; McCorkle L; Quade DJ; Guo J; Hamilton B; Cakmak M; Sprowl G
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):546-52. PubMed ID: 21294517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine.
    Meador MA; Malow EJ; Silva R; Wright S; Quade D; Vivod SL; Guo H; Guo J; Cakmak M
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):536-44. PubMed ID: 22233638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Modulus, Strut-like poly(ether ether ketone) Aerogels Produced from a Benign Solvent.
    Spiering GA; Godshall GF; Moore RB
    Gels; 2024 Apr; 10(4):. PubMed ID: 38667702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous fabrication of core-shell aerogel microparticles using microfluidic flows.
    Teo N; Jin C; Kulkarni A; Jana SC
    J Colloid Interface Sci; 2020 Mar; 561():772-781. PubMed ID: 31761464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Preparation of Mesoporous Methylsilsesquioxane Aerogels by Microwave Heating Technology.
    Guo X; Li Z; Lei W; Ding R; Zhang Y; Yang H
    Molecules; 2021 Mar; 26(7):. PubMed ID: 33807252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose Nanofibril Aerogels: Synergistic Improvement of Hydrophobicity, Strength, and Thermal Stability via Cross-Linking with Diisocyanate.
    Jiang F; Hsieh YL
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2825-2834. PubMed ID: 28079358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and Characterization of Polyimide Aerogels with a Uniform Nanoporous Framework.
    Zhong Y; Kong Y; Zhang J; Chen Y; Li B; Wu X; Liu S; Shen X; Cui S
    Langmuir; 2018 Sep; 34(36):10529-10536. PubMed ID: 30118236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transparent Ethenylene-Bridged Polymethylsiloxane Aerogels: Mechanical Flexibility and Strength and Availability for Addition Reaction.
    Shimizu T; Kanamori K; Maeno A; Kaji H; Doherty CM; Nakanishi K
    Langmuir; 2017 May; 33(18):4543-4550. PubMed ID: 28412818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.