BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 29958770)

  • 21. T7 RNA polymerase-driven inducible cell lysis for DNA transfer from Escherichia coli to Bacillus subtilis.
    Juhas M; Ajioka JW
    Microb Biotechnol; 2017 Nov; 10(6):1797-1808. PubMed ID: 28815907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Novel expression system for Corynebacterium acetoacidophilum and Escherichia coli based on the T7 RNA polymerase-dependent promoter.
    Equbal MJ; Srivastava P; Agarwal GP; Deb JK
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7755-66. PubMed ID: 23624684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Light-responsive control of bacterial gene expression: precise triggering of the lac promoter activity using photocaged IPTG.
    Binder D; Grünberger A; Loeschcke A; Probst C; Bier C; Pietruszka J; Wiechert W; Kohlheyer D; Jaeger KE; Drepper T
    Integr Biol (Camb); 2014 Aug; 6(8):755-65. PubMed ID: 24894989
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.
    Tran DTM; Phan TTP; Huynh TK; Dang NTK; Huynh PTK; Nguyen TM; Truong TTT; Tran TL; Schumann W; Nguyen HD
    Microb Cell Fact; 2017 Jul; 16(1):130. PubMed ID: 28743271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Escherichia coli σ
    Schuller A; Cserjan-Puschmann M; Tauer C; Jarmer J; Wagenknecht M; Reinisch D; Grabherr R; Striedner G
    Microb Cell Fact; 2020 Mar; 19(1):58. PubMed ID: 32138729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Escherichia coli strain for thermoinducible T7 RNA polymerase-driven expression.
    Fedorova ND; Peredelchuk MY; Kirpichnikov MP; Bennett GN
    Gene; 1996 Oct; 177(1-2):267-8. PubMed ID: 8921879
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-level autoenhanced expression of a single-copy gene in Escherichia coli: overproduction of bacteriophage T7 protein kinase directed by T7 late genetic elements.
    Marchand I; Nicholson AW; Dreyfus M
    Gene; 2001 Jan; 262(1-2):231-8. PubMed ID: 11179688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stringent regulation and high-level expression of heterologous genes in Escherichia coli using T7 system controllable by the araBAD promoter.
    Chao YP; Chiang CJ; Hung WB
    Biotechnol Prog; 2002; 18(2):394-400. PubMed ID: 11934312
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attenuated Salmonella enterica serovar typhi live vector with inducible chromosomal expression of the T7 RNA polymerase and its evaluation with reporter genes.
    Santiago-Machuca AE; Ruiz-Pérez F; Delgado-Dominguez JS; Becker I; Isibasi A; González-Bonilla CR
    Plasmid; 2002 Mar; 47(2):108-19. PubMed ID: 11982332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A T7 RNA polymerase-based toolkit for the concerted expression of clustered genes.
    Arvani S; Markert A; Loeschcke A; Jaeger KE; Drepper T
    J Biotechnol; 2012 Jun; 159(3):162-71. PubMed ID: 22285639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression and purification of active recombinant T7 RNA polymerase from E. coli.
    Rio DC
    Cold Spring Harb Protoc; 2013 Nov; 2013(11):. PubMed ID: 24184761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of an AraC-araBAD promoter-regulated T7 expression system.
    Wycuff DR; Matthews KS
    Anal Biochem; 2000 Jan; 277(1):67-73. PubMed ID: 10610690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli.
    Cress BF; Jones JA; Kim DC; Leitz QD; Englaender JA; Collins SM; Linhardt RJ; Koffas MA
    Nucleic Acids Res; 2016 May; 44(9):4472-85. PubMed ID: 27079979
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper-inducible expression system for metabolic engineering of Escherichia coli.
    Liu L; Zhang L; Wang J; Cao M; Yuan J
    J Appl Microbiol; 2023 Jun; 134(6):. PubMed ID: 37230951
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic Blue Light-Inducible T7 RNA Polymerases (Opto-T7RNAPs) for Precise Spatiotemporal Gene Expression Control.
    Baumschlager A; Aoki SK; Khammash M
    ACS Synth Biol; 2017 Nov; 6(11):2157-2167. PubMed ID: 29045151
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmid replication based on the T7 origin of replication requires a T7 RNAP variant and inactivation of ribonuclease H.
    Becker K; Meyer A; Roberts TM; Panke S
    Nucleic Acids Res; 2021 Aug; 49(14):8189-8198. PubMed ID: 34255845
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improvement of the thermoregulated T7 expression system by using the heat-sensitive lacI.
    Wang ZW; Law WS; Chao YP
    Biotechnol Prog; 2004; 20(5):1352-8. PubMed ID: 15458317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering of a Highly Efficient Escherichia coli Strain for Mevalonate Fermentation through Chromosomal Integration.
    Wang J; Niyompanich S; Tai YS; Wang J; Bai W; Mahida P; Gao T; Zhang K
    Appl Environ Microbiol; 2016 Dec; 82(24):7176-7184. PubMed ID: 27736790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ASIA: An automated stress-inducible adaptor for enhanced stress protein expression in engineered Escherichia coli.
    Hsiang CC; Ng IS
    Biotechnol Bioeng; 2024 Jun; 121(6):1902-1911. PubMed ID: 38450753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integration of Multiple Phage Attachment Sites System to Create the Chromosomal T7 System for Protein Production in
    Cheng SY; Lin TH; Chen PT
    J Agric Food Chem; 2022 Aug; 70(33):10239-10247. PubMed ID: 35960546
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.