BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 29959033)

  • 1. A meta-learning framework using representation learning to predict drug-drug interaction.
    Deepika SS; Geetha TV
    J Biomed Inform; 2018 Aug; 84():136-147. PubMed ID: 29959033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting Drug-Drug Interactions Based on Integrated Similarity and Semi-Supervised Learning.
    Yan C; Duan G; Zhang Y; Wu FX; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):168-179. PubMed ID: 32310779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DDI-PULearn: a positive-unlabeled learning method for large-scale prediction of drug-drug interactions.
    Zheng Y; Peng H; Zhang X; Zhao Z; Gao X; Li J
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):661. PubMed ID: 31870276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting drug-drug interactions using multi-modal deep auto-encoders based network embedding and positive-unlabeled learning.
    Zhang Y; Qiu Y; Cui Y; Liu S; Zhang W
    Methods; 2020 Jul; 179():37-46. PubMed ID: 32497603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. META-DDIE: predicting drug-drug interaction events with few-shot learning.
    Deng Y; Qiu Y; Xu X; Liu S; Zhang Z; Zhu S; Zhang W
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34893793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes.
    Hameed PN; Verspoor K; Kusljic S; Halgamuge S
    BMC Bioinformatics; 2017 Mar; 18(1):140. PubMed ID: 28249566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-Supervised Learning Algorithm for Identifying High-Priority Drug-Drug Interactions Through Adverse Event Reports.
    Liu N; Chen CB; Kumara S
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):57-68. PubMed ID: 31395567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting and understanding comprehensive drug-drug interactions via semi-nonnegative matrix factorization.
    Yu H; Mao KT; Shi JY; Huang H; Chen Z; Dong K; Yiu SM
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):14. PubMed ID: 29671393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectively Identifying Compound-Protein Interactions by Learning from Positive and Unlabeled Examples.
    Cheng Z; Zhou S; Wang Y; Liu H; Guan J; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):1832-1843. PubMed ID: 28113437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Drug-Target Network-Based Supervised Machine Learning Repurposing Method Allowing the Use of Multiple Heterogeneous Information Sources.
    Nascimento ACA; PrudĂȘncio RBC; Costa IG
    Methods Mol Biol; 2019; 1903():281-289. PubMed ID: 30547449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multimodal deep learning framework for predicting drug-drug interaction events.
    Deng Y; Xu X; Qiu Y; Xia J; Zhang W; Liu S
    Bioinformatics; 2020 Aug; 36(15):4316-4322. PubMed ID: 32407508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases.
    Zheng Y; Peng H; Zhang X; Zhao Z; Yin J; Li J
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):517. PubMed ID: 30598065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of drug-disease associations based on ensemble meta paths and singular value decomposition.
    Wu G; Liu J; Yue X
    BMC Bioinformatics; 2019 Mar; 20(Suppl 3):134. PubMed ID: 30925858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CNN-DDI: a learning-based method for predicting drug-drug interactions using convolution neural networks.
    Zhang C; Lu Y; Zang T
    BMC Bioinformatics; 2022 Mar; 23(Suppl 1):88. PubMed ID: 35255808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring semi-supervised variational autoencoders for biomedical relation extraction.
    Zhang Y; Lu Z
    Methods; 2019 Aug; 166():112-119. PubMed ID: 30822516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning self-supervised molecular representations for drug-drug interaction prediction.
    Kpanou R; Dallaire P; Rousseau E; Corbeil J
    BMC Bioinformatics; 2024 Jan; 25(1):47. PubMed ID: 38291362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Positive-unlabeled learning in bioinformatics and computational biology: a brief review.
    Li F; Dong S; Leier A; Han M; Guo X; Xu J; Wang X; Pan S; Jia C; Zhang Y; Webb GI; Coin LJM; Li C; Song J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34729589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Label Propagation Prediction of Drug-Drug Interactions Based on Clinical Side Effects.
    Zhang P; Wang F; Hu J; Sorrentino R
    Sci Rep; 2015 Jul; 5():12339. PubMed ID: 26196247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs.
    Feng YH; Zhang SW
    Molecules; 2022 May; 27(9):. PubMed ID: 35566354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting potential drug-drug interactions by integrating chemical, biological, phenotypic and network data.
    Zhang W; Chen Y; Liu F; Luo F; Tian G; Li X
    BMC Bioinformatics; 2017 Jan; 18(1):18. PubMed ID: 28056782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.