BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 29959234)

  • 1. Neural Computations Underlying Causal Structure Learning.
    Tomov MS; Dorfman HM; Gershman SJ
    J Neurosci; 2018 Aug; 38(32):7143-7157. PubMed ID: 29959234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissociable Fronto-Operculum-Insula Control Signals for Anticipation and Detection of Inhibitory Sensory Cue.
    Cai W; Chen T; Ide JS; Li CR; Menon V
    Cereb Cortex; 2017 Aug; 27(8):4073-4082. PubMed ID: 27473319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Trial-by-Trial Recoding of Task-Set Representations in the Frontoparietal Cortex Mediates Behavioral Flexibility.
    Qiao L; Zhang L; Chen A; Egner T
    J Neurosci; 2017 Nov; 37(45):11037-11050. PubMed ID: 28972126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional roles and cultural modulations of the medial prefrontal and parietal activity associated with causal attribution.
    Han S; Mao L; Qin J; Friederici AD; Ge J
    Neuropsychologia; 2011 Jan; 49(1):83-91. PubMed ID: 21075129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Representational Similarity Analysis of Cognitive Control during Color-Word Stroop.
    Freund MC; Bugg JM; Braver TS
    J Neurosci; 2021 Sep; 41(35):7388-7402. PubMed ID: 34162756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causal Inference Gates Corticostriatal Learning.
    Dorfman HM; Tomov MS; Cheung B; Clarke D; Gershman SJ; Hughes BL
    J Neurosci; 2021 Aug; 41(32):6892-6904. PubMed ID: 34244363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maintaining structured information: an investigation into functions of parietal and lateral prefrontal cortices.
    Wendelken C; Bunge SA; Carter CS
    Neuropsychologia; 2008 Jan; 46(2):665-78. PubMed ID: 18022652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Responses of human frontal cortex to surprising events are predicted by formal associative learning theory.
    Fletcher PC; Anderson JM; Shanks DR; Honey R; Carpenter TA; Donovan T; Papadakis N; Bullmore ET
    Nat Neurosci; 2001 Oct; 4(10):1043-8. PubMed ID: 11559855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The involvement of the fronto-parietal brain network in oculomotor sequence learning using fMRI.
    Gonzalez CC; Billington J; Burke MR
    Neuropsychologia; 2016 Jul; 87():1-11. PubMed ID: 27157884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the neural computations of arbitrary visuomotor learning through fMRI and associative learning theory.
    Brovelli A; Laksiri N; Nazarian B; Meunier M; Boussaoud D
    Cereb Cortex; 2008 Jul; 18(7):1485-95. PubMed ID: 18033767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Neural Bases of Action-Outcome Learning in Humans.
    Morris RW; Dezfouli A; Griffiths KR; Le Pelley ME; Balleine BW
    J Neurosci; 2022 Apr; 42(17):3636-3647. PubMed ID: 35296548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Working memory load modulation of parieto-frontal connections: evidence from dynamic causal modeling.
    Ma L; Steinberg JL; Hasan KM; Narayana PA; Kramer LA; Moeller FG
    Hum Brain Mapp; 2012 Aug; 33(8):1850-67. PubMed ID: 21692148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural Representations of Hierarchical Rule Sets: The Human Control System Represents Rules Irrespective of the Hierarchical Level to Which They Belong.
    Pischedda D; Görgen K; Haynes JD; Reverberi C
    J Neurosci; 2017 Dec; 37(50):12281-12296. PubMed ID: 29114072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.
    Weilnhammer VA; Stuke H; Sterzer P; Schmack K
    J Neurosci; 2018 May; 38(21):5008-5021. PubMed ID: 29712780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observing Action Sequences Elicits Sequence-Specific Neural Representations in Frontoparietal Brain Regions.
    Apšvalka D; Cross ES; Ramsey R
    J Neurosci; 2018 Nov; 38(47):10114-10128. PubMed ID: 30282731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurocomputational Dynamics of Sequence Learning.
    Konovalov A; Krajbich I
    Neuron; 2018 Jun; 98(6):1282-1293.e4. PubMed ID: 29861282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction error during retrospective revaluation of causal associations in humans: fMRI evidence in favor of an associative model of learning.
    Corlett PR; Aitken MR; Dickinson A; Shanks DR; Honey GD; Honey RA; Robbins TW; Bullmore ET; Fletcher PC
    Neuron; 2004 Dec; 44(5):877-88. PubMed ID: 15572117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Putting the pieces together: Generating a novel representational space through deductive reasoning.
    Alfred KL; Connolly AC; Kraemer DJM
    Neuroimage; 2018 Dec; 183():99-111. PubMed ID: 30081195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frontal and parietal lobe activation during transitive inference in humans.
    Acuna BD; Eliassen JC; Donoghue JP; Sanes JN
    Cereb Cortex; 2002 Dec; 12(12):1312-21. PubMed ID: 12427681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventrolateral prefrontal cortex activity associated with individual differences in arbitrary delayed paired-association learning performance: a functional magnetic resonance imaging study.
    Tanabe HC; Sadato N
    Neuroscience; 2009 May; 160(3):688-97. PubMed ID: 19285546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.