BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

855 related articles for article (PubMed ID: 29959238)

  • 1. Neural Processing of Acoustic and Electric Interaural Time Differences in Normal-Hearing Gerbils.
    Vollmer M
    J Neurosci; 2018 Aug; 38(31):6949-6966. PubMed ID: 29959238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Coding of Interaural Time Differences with Bilateral Cochlear Implants in Unanesthetized Rabbits.
    Chung Y; Hancock KE; Delgutte B
    J Neurosci; 2016 May; 36(20):5520-31. PubMed ID: 27194332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural ITD Sensitivity and Temporal Coding with Cochlear Implants in an Animal Model of Early-Onset Deafness.
    Chung Y; Buechel BD; Sunwoo W; Wagner JD; Delgutte B
    J Assoc Res Otolaryngol; 2019 Feb; 20(1):37-56. PubMed ID: 30623319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical Representation of Interaural Time Difference Is Impaired by Deafness in Development: Evidence from Children with Early Long-term Access to Sound through Bilateral Cochlear Implants Provided Simultaneously.
    Easwar V; Yamazaki H; Deighton M; Papsin B; Gordon K
    J Neurosci; 2017 Mar; 37(9):2349-2361. PubMed ID: 28123078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow Temporal Integration Enables Robust Neural Coding and Perception of a Cue to Sound Source Location.
    Brown AD; Tollin DJ
    J Neurosci; 2016 Sep; 36(38):9908-21. PubMed ID: 27656028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity to interaural time differences in the inferior colliculus with bilateral cochlear implants.
    Smith ZM; Delgutte B
    J Neurosci; 2007 Jun; 27(25):6740-50. PubMed ID: 17581961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness.
    Hancock KE; Noel V; Ryugo DK; Delgutte B
    J Neurosci; 2010 Oct; 30(42):14068-79. PubMed ID: 20962228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of interaural time delays of noise stimuli on low-frequency cells in the cat's inferior colliculus. III. Evidence for cross-correlation.
    Yin TC; Chan JC; Carney LH
    J Neurophysiol; 1987 Sep; 58(3):562-83. PubMed ID: 3655883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate dependent neural responses of interaural-time-difference cues in fine-structure and envelope.
    Hu H; Ewert SD; Kollmeier B; Vickers D
    PeerJ; 2024; 12():e17104. PubMed ID: 38680894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity to interaural time differences in the inferior colliculus of cochlear implanted rats with or without hearing experience.
    Buck AN; Rosskothen-Kuhl N; Schnupp JW
    Hear Res; 2021 Sep; 408():108305. PubMed ID: 34315027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lateralization of interimplant timing and level differences in children who use bilateral cochlear implants.
    Salloum CA; Valero J; Wong DD; Papsin BC; van Hoesel R; Gordon KA
    Ear Hear; 2010 Aug; 31(4):441-56. PubMed ID: 20489647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic Bilateral Cochlear Implant Stimulation Partially Restores Neural Binaural Sensitivity in Neonatally-Deaf Rabbits.
    Sunwoo W; Delgutte B; Chung Y
    J Neurosci; 2021 Apr; 41(16):3651-3664. PubMed ID: 33687960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of interaural pitch matching and auditory image centering on binaural sensitivity in cochlear implant users.
    Kan A; Litovsky RY; Goupell MJ
    Ear Hear; 2015; 36(3):e62-8. PubMed ID: 25565660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity to interaural level and envelope time differences of two bilateral cochlear implant listeners using clinical sound processors.
    Laback B; Pok SM; Baumgartner WD; Deutsch WA; Schmid K
    Ear Hear; 2004 Oct; 25(5):488-500. PubMed ID: 15599195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing of interaural time and intensity differences in the cat inferior colliculus.
    Caird D; Klinke R
    Exp Brain Res; 1987; 68(2):379-92. PubMed ID: 3691710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Envelope coding in the lateral superior olive. I. Sensitivity to interaural time differences.
    Joris PX; Yin TC
    J Neurophysiol; 1995 Mar; 73(3):1043-62. PubMed ID: 7608754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Provision of interaural time difference information in chronic intracochlear electrical stimulation enhances neural sensitivity to these differences in neonatally deafened cats.
    Thompson AC; Irvine DRF; Fallon JB
    Hear Res; 2021 Jul; 406():108253. PubMed ID: 33971428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience.
    Seidl AH; Grothe B
    J Neurophysiol; 2005 Aug; 94(2):1028-36. PubMed ID: 15829592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neonatal Deafening Selectively Degrades the Sensitivity to Interaural Time Differences of Electrical Stimuli in Low-Frequency Pathways in Rats.
    Sunwoo W
    eNeuro; 2023 Jan; 10(1):. PubMed ID: 36609304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural and behavioral sensitivity to interaural time differences using amplitude modulated tones with mismatched carrier frequencies.
    Blanks DA; Roberts JM; Buss E; Hall JW; Fitzpatrick DC
    J Assoc Res Otolaryngol; 2007 Sep; 8(3):393-408. PubMed ID: 17657543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.