These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29959254)

  • 1. High-Throughput Microfluidic Sorting of Live Magnetotactic Bacteria.
    Tay A; Pfeiffer D; Rowe K; Tannenbaum A; Popp F; Strangeway R; Schüler D; Di Carlo D
    Appl Environ Microbiol; 2018 Sep; 84(17):. PubMed ID: 29959254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Set-up of a pharmaceutical cell bank of Magnetospirillum gryphiswaldense MSR1 magnetotactic bacteria producing highly pure magnetosomes.
    Chades T; Le Fèvre R; Chebbi I; Blondeau K; Guyot F; Alphandéry E
    Microb Cell Fact; 2024 Feb; 23(1):70. PubMed ID: 38419080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional expression of foreign magnetosome genes in the alphaproteobacterium
    Awal RP; Lefevre CT; Schüler D
    mBio; 2023 Aug; 14(4):e0328222. PubMed ID: 37318230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic evidence of the illumination response mechanism and evolutionary history of magnetotactic bacteria within the Rhodospirillaceae family.
    Wang Y; Casaburi G; Lin W; Li Y; Wang F; Pan Y
    BMC Genomics; 2019 May; 20(1):407. PubMed ID: 31117953
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Method for Producing Highly Pure Magnetosomes in Large Quantity for Medical Applications Using
    Berny C; Le Fèvre R; Guyot F; Blondeau K; Guizonne C; Rousseau E; Bayan N; Alphandéry E
    Front Bioeng Biotechnol; 2020; 8():16. PubMed ID: 32133346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic nanoparticles from Magnetospirillum gryphiswaldense increase the efficacy of thermotherapy in a model of colon carcinoma.
    Mannucci S; Ghin L; Conti G; Tambalo S; Lascialfari A; Orlando T; Benati D; Bernardi P; Betterle N; Bassi R; Marzola P; Sbarbati A
    PLoS One; 2014; 9(10):e108959. PubMed ID: 25289664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Genome Editing of
    Chen H; Zhang SD; Chen L; Cai Y; Zhang WJ; Song T; Wu LF
    Front Microbiol; 2018; 9():1569. PubMed ID: 30065707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of magnetic nanoparticles by human mesenchymal stem cells following transfection with the magnetotactic bacterial gene mms6.
    Elfick A; Rischitor G; Mouras R; Azfer A; Lungaro L; Uhlarz M; Herrmannsdörfer T; Lucocq J; Gamal W; Bagnaninchi P; Semple S; Salter DM
    Sci Rep; 2017 Jan; 7():39755. PubMed ID: 28051139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Angle sensing in magnetotaxis of Magnetospirillum magneticum AMB-1.
    Zhu X; Ge X; Li N; Wu LF; Luo C; Ouyang Q; Tu Y; Chen G
    Integr Biol (Camb); 2014 Jul; 6(7):706-13. PubMed ID: 24877161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect and role of environmental conditions on magnetosome synthesis.
    Moisescu C; Ardelean II; Benning LG
    Front Microbiol; 2014; 5():49. PubMed ID: 24575087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromagnetic calculation of the magnetite magnetosomal morphology control of magnetism in magnetotactic bacteria.
    Pei Z; Chang L; Bai F; Harrison RJ
    J R Soc Interface; 2023 Sep; 20(206):20230297. PubMed ID: 37751873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and Applications of Microfluidic Devices: A Review.
    Niculescu AG; Chircov C; Bîrcă AC; Grumezescu AM
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic nanoparticle-mediated enrichment technology combined with microfluidic single cell separation technology: A technology for efficient separation and degradation of functional bacteria in single cell liquid phase.
    Xuan Y; Yin M; Sun Y; Liu M; Bai G; Diao Z; Ma B
    Bioresour Technol; 2024 Jun; 401():130686. PubMed ID: 38599351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic Microtweezers for High-Throughput Bioseparation in Sub-Nanoliter Droplets.
    Dumas S; Alexandre L; Richerd M; Serra M; Descroix S
    Methods Mol Biol; 2024; 2804():163-176. PubMed ID: 38753147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying the magnetic advantage in magnetotaxis.
    Smith MJ; Sheehan PE; Perry LL; O'Connor K; Csonka LN; Applegate BM; Whitman LJ
    Biophys J; 2006 Aug; 91(3):1098-107. PubMed ID: 16714352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards Tumor Targeting via Invasive Assay Using
    Xavierselvan M; Divecha HR; Hajra M; Silwal S; Macwan I
    Front Microbiol; 2021; 12():697132. PubMed ID: 34367097
    [No Abstract]   [Full Text] [Related]  

  • 17. Constant Flux of Spatial Niche Partitioning through High-Resolution Sampling of Magnetotactic Bacteria.
    He K; Gilder SA; Orsi WD; Zhao X; Petersen N
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28778897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enrichment of rare events using a multi-parameter high throughput microfluidic droplet sorter.
    Hung ST; Mukherjee S; Jimenez R
    Lab Chip; 2020 Feb; 20(4):834-843. PubMed ID: 31974539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation.
    Eun YJ; Utada AS; Copeland MF; Takeuchi S; Weibel DB
    ACS Chem Biol; 2011 Mar; 6(3):260-6. PubMed ID: 21142208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Microfluidic-Electromagnetic System to Probe Single-Cell Magnetotaxis in Microconfinement.
    Bradley B; Gomez-Cruz J; Escobedo C
    Bioengineering (Basel); 2023 Sep; 10(9):. PubMed ID: 37760136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.