These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 29959464)

  • 1. Reactive oxygen species induce sclerotial formation in Morchella importuna.
    Liu Q; Zhao Z; Dong H; Dong C
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7997-8009. PubMed ID: 29959464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome analysis of cells from different areas reveals ROS responsive mechanism at sclerotial initiation stage in Morchella importuna.
    Liu Q; He G; Wei J; Dong C
    Sci Rep; 2021 May; 11(1):9418. PubMed ID: 33941791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of autophagy and apoptosis and lipid accumulation in sclerotial morphogenesis of Morchella importuna.
    He P; Wang K; Cai Y; Hu X; Zheng Y; Zhang J; Liu W
    Micron; 2018 Jun; 109():34-40. PubMed ID: 29614428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytological analysis of the effect of reactive oxygen species on sclerotia formation in Sclerotinia minor.
    Osato T; Park P; Ikeda K
    Fungal Biol; 2017 Feb; 121(2):127-136. PubMed ID: 28089044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial cultivation of true morels: current state, issues and perspectives.
    Liu Q; Ma H; Zhang Y; Dong C
    Crit Rev Biotechnol; 2018 Mar; 38(2):259-271. PubMed ID: 28585444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Aging on Culture and Cultivation of the Culinary-Medicinal Mushrooms Morchella importuna and M. sextelata (Ascomycetes).
    He P; Yu M; Cai Y; Liu W; Wang W; Wang S; Li J
    Int J Med Mushrooms; 2019; 21(11):1089-1098. PubMed ID: 32450018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selenium reduces the pathogenicity of Sclerotinia sclerotiorum by inhibiting sclerotial formation and germination.
    Cheng Q; Hu C; Jia W; Cai M; Zhao Y; Tang Y; Yang D; Zhou Y; Sun X; Zhao X
    Ecotoxicol Environ Saf; 2019 Nov; 183():109503. PubMed ID: 31394376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of sclerotia formation on ligninolytic enzyme production in Morchella crassipes.
    Kanwal HK; Reddy MS
    J Basic Microbiol; 2014 Jul; 54 Suppl 1():S63-9. PubMed ID: 23712903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sclerotial formation of Polyporus umbellatus by low temperature treatment under artificial conditions.
    Xing YM; Zhang LC; Liang HQ; Lv J; Song C; Guo SX; Wang CL; Lee TS; Lee MW
    PLoS One; 2013; 8(2):e56190. PubMed ID: 23437090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic Analysis Reveals the Importance of Exudates on Sclerotial Development in
    Tian J; Chen C; Sun H; Wang Z; Steinkellner S; Feng J; Liang Y
    J Agric Food Chem; 2021 Feb; 69(4):1430-1440. PubMed ID: 33481591
    [No Abstract]   [Full Text] [Related]  

  • 11. Ca
    Pan K-Y; Liu H-H; Tseng M-N; Chang H-X
    Microbiol Spectr; 2024 Jun; 12(6):e0020024. PubMed ID: 38687071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aroma-volatile profile of black morel (Morchella importuna) grown in Israel.
    Tietel Z; Masaphy S
    J Sci Food Agric; 2018 Jan; 98(1):346-353. PubMed ID: 28597472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cAMP blocks MAPK activation and sclerotial development via Rap-1 in a PKA-independent manner in Sclerotinia sclerotiorum.
    Chen C; Dickman MB
    Mol Microbiol; 2005 Jan; 55(1):299-311. PubMed ID: 15612936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Secondary Metabolites from Mycelial Cultures of Black Morel Mushroom Morchella importuna (Ascomycota).
    Zhou J; Yang C; Meng Q; Fu S
    Int J Med Mushrooms; 2023; 25(2):49-54. PubMed ID: 36749056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic evidence for involvement of reactive oxygen species in
    Liu B; Wang H; Ma Z; Gai X; Sun Y; He S; Liu X; Wang Y; Xuan Y; Gao Z
    PeerJ; 2018; 6():e5103. PubMed ID: 29938140
    [No Abstract]   [Full Text] [Related]  

  • 16. Nox gene expression and cytochemical localization of hydrogen peroxide in Polyporus umbellatus sclerotial formation.
    Xing YM; Chen J; Song C; Liu YY; Guo SX; Wang CL
    Int J Mol Sci; 2013 Nov; 14(11):22967-81. PubMed ID: 24264041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotechnology of morel mushrooms: successful fruiting body formation and development in a soilless system.
    Masaphy S
    Biotechnol Lett; 2010 Oct; 32(10):1523-7. PubMed ID: 20563623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptomics reveals potential genes involved in the vegetative growth of
    Liu W; Cai Y; He P; Chen L; Bian Y
    3 Biotech; 2019 Mar; 9(3):81. PubMed ID: 30800592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opposite Polarity Monospore Genome De Novo Sequencing and Comparative Analysis Reveal the Possible Heterothallic Life Cycle of
    Liu W; Chen L; Cai Y; Zhang Q; Bian Y
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149649
    [No Abstract]   [Full Text] [Related]  

  • 20. ROS and trehalose regulate sclerotial development in Rhizoctonia solani AG-1 IA.
    Wang C; Pi L; Jiang S; Yang M; Shu C; Zhou E
    Fungal Biol; 2018 May; 122(5):322-332. PubMed ID: 29665958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.