These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 29959484)
1. Rapid and sensitive SERS detection of the cytokine tumor necrosis factor alpha (tnf-α) in a magnetic bead pull-down assay with purified and highly Raman-active gold nanoparticle clusters. Lai Y; Schlücker S; Wang Y Anal Bioanal Chem; 2018 Sep; 410(23):5993-6000. PubMed ID: 29959484 [TBL] [Abstract][Full Text] [Related]
2. A novel SERS nanoprobe based on the use of core-shell nanoparticles with embedded reporter molecule to detect E. coli O157:H7 with high sensitivity. Zhu T; Hu Y; Yang K; Dong N; Yu M; Jiang N Mikrochim Acta; 2017 Dec; 185(1):30. PubMed ID: 29594575 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
4. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Li C; Ouyang H; Tang X; Wen G; Liang A; Jiang Z Biosens Bioelectron; 2017 Jan; 87():888-893. PubMed ID: 27662583 [TBL] [Abstract][Full Text] [Related]
5. Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids. Zhang Y; Walkenfort B; Yoon JH; Schlücker S; Xie W Phys Chem Chem Phys; 2015 Sep; 17(33):21120-6. PubMed ID: 25491599 [TBL] [Abstract][Full Text] [Related]
6. Rapid immuno-SERS microscopy for tissue imaging with single-nanoparticle sensitivity. Salehi M; Steinigeweg D; Ströbel P; Marx A; Packeisen J; Schlücker S J Biophotonics; 2013 Oct; 6(10):785-92. PubMed ID: 23225645 [TBL] [Abstract][Full Text] [Related]
7. Ultrasensitive SERS immunoassay based on diatom biosilica for detection of interleukins in blood plasma. Kamińska A; Sprynskyy M; Winkler K; Szymborski T Anal Bioanal Chem; 2017 Nov; 409(27):6337-6347. PubMed ID: 28852782 [TBL] [Abstract][Full Text] [Related]
8. Preconcentration and SERS-based determination of infliximab in blood by using a TNF-α-modified gold-coated copper oxide nanomaterial. Muneer S; Ayoko GA; Islam N; Izake EL Mikrochim Acta; 2019 Nov; 186(12):780. PubMed ID: 31729556 [TBL] [Abstract][Full Text] [Related]
9. Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen. Panikkanvalappil SR; El-Sayed MA J Phys Chem B; 2014 Dec; 118(49):14085-91. PubMed ID: 25144402 [TBL] [Abstract][Full Text] [Related]
10. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
11. SERS immunoassay based on the capture and concentration of antigen-assembled gold nanoparticles. Lopez A; Lovato F; Oh SH; Lai YH; Filbrun S; Driskell EA; Driskell JD Talanta; 2016; 146():388-93. PubMed ID: 26695280 [TBL] [Abstract][Full Text] [Related]
12. A graphene oxide/gold nanoparticle-based amplification method for SERS immunoassay of cardiac troponin I. Fu X; Wang Y; Liu Y; Liu H; Fu L; Wen J; Li J; Wei P; Chen L Analyst; 2019 Feb; 144(5):1582-1589. PubMed ID: 30666995 [TBL] [Abstract][Full Text] [Related]
13. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Roca M; Haes AJ J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552 [TBL] [Abstract][Full Text] [Related]
14. Improving the sensitivity of immunoassay based on MBA-embedded Au@SiO Wei C; Xu MM; Fang CW; Jin Q; Yuan YX; Yao JL Spectrochim Acta A Mol Biomol Spectrosc; 2017 Mar; 175():262-268. PubMed ID: 28082212 [TBL] [Abstract][Full Text] [Related]
15. Detection of Multiple Pathogens in Serum Using Silica-Encapsulated Nanotags in a Surface-Enhanced Raman Scattering-Based Immunoassay. Neng J; Li Y; Driscoll AJ; Wilson WC; Johnson PA J Agric Food Chem; 2018 Jun; 66(22):5707-5712. PubMed ID: 29733579 [TBL] [Abstract][Full Text] [Related]
16. "Elastic" property of mesoporous silica shell: for dynamic surface enhanced Raman scattering ability monitoring of growing noble metal nanostructures via a simplified spatially confined growth method. Lin M; Wang Y; Sun X; Wang W; Chen L ACS Appl Mater Interfaces; 2015 Apr; 7(14):7516-25. PubMed ID: 25815901 [TBL] [Abstract][Full Text] [Related]
17. Highly sensitive SERS-based immunoassay of aflatoxin B1 using silica-encapsulated hollow gold nanoparticles. Ko J; Lee C; Choo J J Hazard Mater; 2015 Mar; 285():11-7. PubMed ID: 25462866 [TBL] [Abstract][Full Text] [Related]
18. Functionalized Au@Ag-Au nanoparticles as an optical and SERS dual probe for lateral flow sensing. Bai T; Wang M; Cao M; Zhang J; Zhang K; Zhou P; Liu Z; Liu Y; Guo Z; Lu X Anal Bioanal Chem; 2018 Mar; 410(9):2291-2303. PubMed ID: 29445833 [TBL] [Abstract][Full Text] [Related]
19. Surface-enhanced Raman scattering (SERS)-active gold nanochains for multiplex detection and photodynamic therapy of cancer. Zhao L; Kim TH; Kim HW; Ahn JC; Kim SY Acta Biomater; 2015 Jul; 20():155-164. PubMed ID: 25848726 [TBL] [Abstract][Full Text] [Related]
20. Dual-reporter SERS-based biomolecular assay with reduced false-positive signals. Chuong TT; Pallaoro A; Chaves CA; Li Z; Lee J; Eisenstein M; Stucky GD; Moskovits M; Soh HT Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9056-9061. PubMed ID: 28784766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]