These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 2995970)

  • 1. Active auxin uptake by zucchini membrane vesicles: quantitation using ESR volume and delta pH determinations.
    Lomax TL; Mehlhorn RJ; Briggs WR
    Proc Natl Acad Sci U S A; 1985 Oct; 82(19):6541-5. PubMed ID: 2995970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of osmotic volumes and pH gradients of plant membrane and lipid vesicles using ESR spectroscopy.
    Lomax TL; Mehlhorn RJ
    Biochim Biophys Acta; 1985 Nov; 821(1):106-14. PubMed ID: 2998461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstitution of lactate proton symport activity in plasma membrane vesicles from the yeast Candida utilis.
    Gerós H; Cássio F; Leão C
    Yeast; 1996 Sep; 12(12):1263-72. PubMed ID: 8905930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of glucose and maltose transport in plasma-membrane vesicles from the yeast Candida utilis.
    van den Broek PJ; van Gompel AE; Luttik MA; Pronk JT; van Leeuwen CC
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):487-95. PubMed ID: 9020885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A role of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles. I. Effect of an artificially imposed H+ gradient on Ca2+ uptake.
    Ueno T; Sekine T
    J Biochem; 1981 Apr; 89(4):1239-46. PubMed ID: 6265434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of a transmembrane pH gradient in epinephrine transport by chromaffin granule membrane vesicles.
    Schuldiner S; Fishkes H; Kanner BI
    Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3713-6. PubMed ID: 29292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The proteoliposomal steady state. Effect of size, capacitance and membrane permeability on cytochrome-oxidase-induced ion gradients.
    Wrigglesworth JM; Cooper CE; Sharpe MA; Nicholls P
    Biochem J; 1990 Aug; 270(1):109-18. PubMed ID: 2168698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auxin transport in membrane vesicles from Cucurbita pepo L.
    Hertel R; Lomax TL; Briggs WR
    Planta; 1983 Apr; 157(3):193-201. PubMed ID: 24264147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificially imposed electrical potentials drive L-glutamate uptake into synaptic vesicles of bovine cerebral cortex.
    Shioi J; Ueda T
    Biochem J; 1990 Apr; 267(1):63-8. PubMed ID: 1970243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Internal pH of isolated chromaffin vesicles.
    Johnson RG; Scarpa A
    J Biol Chem; 1976 Apr; 251(7):2189-91. PubMed ID: 5444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles.
    Ramos S; Schuldiner S; Kaback HR
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1892-6. PubMed ID: 6961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of pH and ionophores on the calcium-pumping ATPase of endoplasmic reticulum microsomes from guinea pig pancreas.
    Galván A; Lucas M
    Biomed Biochim Acta; 1987; 46(10):677-82. PubMed ID: 2965580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory oxidation products of indole-3-acetic acid: enzymic formation and detoxification by pea seedlings.
    Still CC; Olivier CC; Moyed HS
    Science; 1965 Sep; 149(3689):1249-51. PubMed ID: 5827722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron spin resonance measurements of the effect of ionophores on the transmembrane pH gradient of an acidophilic bacterium.
    McLaggan D; Belkin S; Packer L; Matin A
    Arch Biochem Biophys; 1989 Aug; 273(1):206-14. PubMed ID: 2547340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of pH and surface charge on cell uptake of auxin.
    Rubery PH; Sheldrake AR
    Nat New Biol; 1973 Aug; 244(139):285-8. PubMed ID: 4517011
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of proton motive force in genetic transformation of Bacillus subtilis.
    van Nieuwenhoven MH; Hellingwerf KJ; Venema G; Konings WN
    J Bacteriol; 1982 Aug; 151(2):771-6. PubMed ID: 6284711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport of N1-methylnicotinamide by organic cation-proton exchange in rat liver membrane vesicles.
    Moseley RH; Morrissette J; Johnson TR
    Am J Physiol; 1990 Dec; 259(6 Pt 1):G973-82. PubMed ID: 2175555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the membrane potential in bacterial membrane vesicles from the accumulation of N-methyldeptropine.
    Ruifrok PG; Konings WN; Meijer DK
    FEBS Lett; 1979 Sep; 105(1):171-6. PubMed ID: 385342
    [No Abstract]   [Full Text] [Related]  

  • 19. The association of proton movement with galactose transport into subcellular membrane vesicles of Escherichia coli.
    Horne P; Henderson PJ
    Biochem J; 1983 Mar; 210(3):699-705. PubMed ID: 6307268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.
    Tiruppathi C; Kulanthaivel P; Ganapathy V; Leibach FH
    Biochem J; 1990 May; 268(1):27-33. PubMed ID: 2160811
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.