BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 29959981)

  • 21. Effect of prenatal alcohol exposure on neonatal sleep-wake behaviour and adult alcohol consumption in the AA and ANA rat lines.
    Hilakivi L; Tuomisto L; Hilakivi I; Kiianmaa K; Hellevuo K; Hyytiä P
    Alcohol Alcohol; 1987; 22(3):231-40. PubMed ID: 3619998
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Sleep patterns and the efficiency of the gentle methods of sleep deprivation in rats at different stages of pregnancy: behavioral study].
    Pigareva ML
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2008; 58(5):611-9. PubMed ID: 19004321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sleep/wake movement velocities, trajectories and micro-arousals during maturation in rats.
    Gradwohl G; Olini N; Huber R
    BMC Neurosci; 2017 Feb; 18(1):24. PubMed ID: 28173758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of maternal subclinical hypothyroidism during pregnancy on brain development in rat offspring.
    Liu D; Teng W; Shan Z; Yu X; Gao Y; Wang S; Fan C; Wang H; Zhang H
    Thyroid; 2010 Aug; 20(8):909-15. PubMed ID: 20615128
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Limited Efficacy of Caffeine and Recovery Costs During and Following 5 Days of Chronic Sleep Restriction.
    Doty TJ; So CJ; Bergman EM; Trach SK; Ratcliffe RH; Yarnell AM; Capaldi VF; Moon JE; Balkin TJ; Quartana PJ
    Sleep; 2017 Dec; 40(12):. PubMed ID: 29029309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neonatal Sleep-Wake Analyses Predict 18-month Neurodevelopmental Outcomes.
    Shellhaas RA; Burns JW; Hassan F; Carlson MD; Barks JDE; Chervin RD
    Sleep; 2017 Nov; 40(11):. PubMed ID: 28958087
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effects of sleep restriction and altered sleep timing on energy intake and energy expenditure.
    McNeil J; Doucet É; Brunet JF; Hintze LJ; Chaumont I; Langlois É; Maitland R; Riopel A; Forest G
    Physiol Behav; 2016 Oct; 164(Pt A):157-63. PubMed ID: 27260515
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A social conflict increases EEG slow-wave activity during subsequent sleep.
    Meerlo P; de Bruin EA; Strijkstra AM; Daan S
    Physiol Behav; 2001 Jun; 73(3):331-5. PubMed ID: 11438358
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain orexins and wake regulation in rats exposed to maternal deprivation.
    Feng P; Vurbic D; Wu Z; Strohl KP
    Brain Res; 2007 Jun; 1154():163-72. PubMed ID: 17466285
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation.
    Van Dongen HP; Maislin G; Mullington JM; Dinges DF
    Sleep; 2003 Mar; 26(2):117-26. PubMed ID: 12683469
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hippocampal EEG theta power density is similar during slow-wave sleep and paradoxical sleep. A long-term study in rats.
    Gaztelu JM; Romero-Vives M; Abraira V; Garcia-Austt E
    Neurosci Lett; 1994 May; 172(1-2):31-4. PubMed ID: 8084533
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation.
    Lau C; Thibodeaux JR; Hanson RG; Rogers JM; Grey BE; Stanton ME; Butenhoff JL; Stevenson LA
    Toxicol Sci; 2003 Aug; 74(2):382-92. PubMed ID: 12773772
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Similar genetic mechanisms may underlie sleep-wake states in neonatal and adult rats.
    Dugovic C; Turek FW
    Neuroreport; 2001 Oct; 12(14):3085-9. PubMed ID: 11568642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat.
    Maloney KJ; Cape EG; Gotman J; Jones BE
    Neuroscience; 1997 Jan; 76(2):541-55. PubMed ID: 9015337
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Age-related changes during a paradigm of chronic sleep restriction.
    de Souza L; Andersen ML; Smaili SS; Lopes GS; Ho PS; Papale LA; Tufik S
    Behav Brain Res; 2010 Dec; 214(2):201-5. PubMed ID: 20580748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling maintenance of wakefulness in rats: comparing potential non-invasive sleep-restriction methods and their effects on sleep and attentional performance.
    Mccarthy A; Loomis S; Eastwood B; Wafford KA; Winsky-Sommerer R; Gilmour G
    J Sleep Res; 2017 Apr; 26(2):179-187. PubMed ID: 27739157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Scatterplot analysis of EEG slow-wave magnitude and heart rate variability: an integrative exploration of cerebral cortical and autonomic functions.
    Kuo TB; Yang CC
    Sleep; 2004 Jun; 27(4):648-56. PubMed ID: 15282999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of the sleep pattern throughout a protocol of chronic sleep restriction induced by two methods of paradoxical sleep deprivation.
    Machado RB; Suchecki D; Tufik S
    Brain Res Bull; 2006 Jul; 70(3):213-20. PubMed ID: 16861105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The high-frequency component of heart rate variability during extended wakefulness is closely associated with the depth of the ensuing sleep in C57BL6 mice.
    Kuo TB; Lai CT; Chen CY; Yang YC; Yang CC
    Neuroscience; 2016 Aug; 330():257-66. PubMed ID: 27267244
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maternal protein restriction early or late in rat pregnancy has differential effects on fetal growth, plasma insulin-like growth factor-I (IGF-I) and liver IGF-I gene expression.
    Muaku SM; Underwood LE; Selvais PL; Ketelslegers JM; Maiter D
    Growth Regul; 1995 Sep; 5(3):125-32. PubMed ID: 7580863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.