These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
811 related articles for article (PubMed ID: 29960192)
1. Biochar from sewage sludge and pruning trees reduced porewater Cd, Pb and Zn concentrations in acidic, but not basic, mine soils under hydric conditions. Álvarez-Rogel J; Tercero Gómez MDC; Conesa HM; Párraga-Aguado I; González-Alcaraz MN J Environ Manage; 2018 Oct; 223():554-565. PubMed ID: 29960192 [TBL] [Abstract][Full Text] [Related]
2. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699 [TBL] [Abstract][Full Text] [Related]
3. Nitrate removal from eutrophic wetlands polluted by metal-mine wastes: effects of liming and plant growth. González-Alcaraz MN; Conesa HM; Álvarez-Rogel J J Environ Manage; 2013 Oct; 128():964-72. PubMed ID: 23892281 [TBL] [Abstract][Full Text] [Related]
4. Combining biochar and sewage sludge for immobilization of heavy metals in mining soils. Penido ES; Martins GC; Mendes TBM; Melo LCA; do Rosário Guimarães I; Guilherme LRG Ecotoxicol Environ Saf; 2019 May; 172():326-333. PubMed ID: 30721876 [TBL] [Abstract][Full Text] [Related]
5. Effect of biochar from peanut shell on speciation and availability of lead and zinc in an acidic paddy soil. Chao X; Qian X; Han-Hua Z; Shuai W; Qi-Hong Z; Dao-You H; Yang-Zhu Z Ecotoxicol Environ Saf; 2018 Nov; 164():554-561. PubMed ID: 30149354 [TBL] [Abstract][Full Text] [Related]
6. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Puga AP; Abreu CA; Melo LC; Paz-Ferreiro J; Beesley L Environ Sci Pollut Res Int; 2015 Nov; 22(22):17606-14. PubMed ID: 26146374 [TBL] [Abstract][Full Text] [Related]
7. Mobility of heavy metals in sandy soil after application of composts produced from maize straw, sewage sludge and biochar. Gondek K; Mierzwa-Hersztek M; Kopeć M J Environ Manage; 2018 Mar; 210():87-95. PubMed ID: 29331853 [TBL] [Abstract][Full Text] [Related]
8. When liming and revegetation contribute to the mobilisation of metals: learning lessons for the phytomanagement of metal-polluted wetlands. González-Alcaraz MN; Conesa HM; Alvarez-Rogel J J Environ Manage; 2013 Feb; 116():72-80. PubMed ID: 23291403 [TBL] [Abstract][Full Text] [Related]
9. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Méndez A; Gómez A; Paz-Ferreiro J; Gascó G Chemosphere; 2012 Nov; 89(11):1354-9. PubMed ID: 22732302 [TBL] [Abstract][Full Text] [Related]
10. Chemical and plant tests to assess the viability of amendments to reduce metal availability in mine soils and tailings. Rodríguez L; Gómez R; Sánchez V; Alonso-Azcárate J Environ Sci Pollut Res Int; 2016 Apr; 23(7):6046-54. PubMed ID: 25772873 [TBL] [Abstract][Full Text] [Related]
11. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Smith SR Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760 [TBL] [Abstract][Full Text] [Related]
12. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure. Meng J; Tao M; Wang L; Liu X; Xu J Sci Total Environ; 2018 Aug; 633():300-307. PubMed ID: 29574374 [TBL] [Abstract][Full Text] [Related]
13. Effects of biochar on availability and plant uptake of heavy metals - A meta-analysis. Chen D; Liu X; Bian R; Cheng K; Zhang X; Zheng J; Joseph S; Crowley D; Pan G; Li L J Environ Manage; 2018 Sep; 222():76-85. PubMed ID: 29804035 [TBL] [Abstract][Full Text] [Related]
14. Amending potential of organic and industrial by-products applied to heavy metal-rich mining soils. Martins GC; Penido ES; Alvarenga IFS; Teodoro JC; Bianchi ML; Guilherme LRG Ecotoxicol Environ Saf; 2018 Oct; 162():581-590. PubMed ID: 30031319 [TBL] [Abstract][Full Text] [Related]
15. Earthworm activities weaken the immobilizing effect of biochar as amendment for metal polluted soils. Wang J; Shi L; Zhang X; Zhao X; Zhong K; Wang S; Zou J; Shen Z; Chen Y Sci Total Environ; 2019 Dec; 696():133729. PubMed ID: 31450052 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of metals in acidic mine spoil with amendments and red fescue (Festuca rubra L.) growth. Simon L Environ Geochem Health; 2005 Dec; 27(4):289-300. PubMed ID: 16027964 [TBL] [Abstract][Full Text] [Related]
17. The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L. Zheng R; Li C; Sun G; Xie Z; Chen J; Wu J; Wang Q Environ Sci Pollut Res Int; 2017 Oct; 24(28):22340-22352. PubMed ID: 28801768 [TBL] [Abstract][Full Text] [Related]
18. Movement of water and heavy metals (Zn, Cu, Pb and Ni) through sand and sandy loam amended with biosolids under steady-state hydrological conditions. Gove L; Cooke CM; Nicholson FA; Beck AJ Bioresour Technol; 2001 Jun; 78(2):171-9. PubMed ID: 11333037 [TBL] [Abstract][Full Text] [Related]
19. The Chemophytostabilisation Process of Heavy Metal Polluted Soil. Grobelak A; Napora A PLoS One; 2015; 10(6):e0129538. PubMed ID: 26115341 [TBL] [Abstract][Full Text] [Related]
20. Mobility of Pb, Zn, Ba, As and Cd toward soil pore water and plants (willow and ryegrass) from a mine soil amended with biochar. Norini MP; Thouin H; Miard F; Battaglia-Brunet F; Gautret P; Guégan R; Le Forestier L; Morabito D; Bourgerie S; Motelica-Heino M J Environ Manage; 2019 Feb; 232():117-130. PubMed ID: 30471545 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]