These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29960298)

  • 1. A reactive, scalable, and transferable model for molecular energies from a neural network approach based on local information.
    Unke OT; Meuwly M
    J Chem Phys; 2018 Jun; 148(24):241708. PubMed ID: 29960298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsic Bond Energies from a Bonds-in-Molecules Neural Network.
    Yao K; Herr JE; Brown SN; Parkhill J
    J Phys Chem Lett; 2017 Jun; 8(12):2689-2694. PubMed ID: 28573865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks.
    Raff LM; Malshe M; Hagan M; Doughan DI; Rockley MG; Komanduri R
    J Chem Phys; 2005 Feb; 122(8):84104. PubMed ID: 15836017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks.
    Nebgen B; Lubbers N; Smith JS; Sifain AE; Lokhov A; Isayev O; Roitberg AE; Barros K; Tretiak S
    J Chem Theory Comput; 2018 Sep; 14(9):4687-4698. PubMed ID: 30064217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical investigation of the dissociation dynamics of vibrationally excited vinyl bromide on an ab initio potential-energy surface obtained using modified novelty sampling and feed-forward neural networks.
    Doughan DI; Raff LM; Rockley MG; Hagan M; Agrawal PM; Komanduri R
    J Chem Phys; 2006 Feb; 124(5):054321. PubMed ID: 16468883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
    Balabin RM; Lomakina EI
    Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training atomic neural networks using fragment-based data generated in virtual reality.
    Amabilino S; Bratholm LA; Bennie SJ; O'Connor MB; Glowacki DR
    J Chem Phys; 2020 Oct; 153(15):154105. PubMed ID: 33092381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio molecular dynamics of hydrogen dissociation on metal surfaces using neural networks and novelty sampling.
    Ludwig J; Vlachos DG
    J Chem Phys; 2007 Oct; 127(15):154716. PubMed ID: 17949200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Modeling of Water Clusters with Density-Functional Theory Using Atom-Centered Potentials.
    Holmes JD; Otero-de-la-Roza A; DiLabio GA
    J Chem Theory Comput; 2017 Sep; 13(9):4205-4215. PubMed ID: 28800231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions.
    Di Pasquale N; Davie SJ; Popelier PLA
    J Chem Phys; 2018 Jun; 148(24):241724. PubMed ID: 29960379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate and Transferable Machine Learning Potential for Molecular Dynamics Simulation of Sodium Silicate Glasses.
    Bertani M; Charpentier T; Faglioni F; Pedone A
    J Chem Theory Comput; 2024 Feb; 20(3):1358-1370. PubMed ID: 38217496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic Energies from a Convolutional Neural Network.
    Chen X; Jørgensen MS; Li J; Hammer B
    J Chem Theory Comput; 2018 Jul; 14(7):3933-3942. PubMed ID: 29812930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BAND NN: A Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic Small Molecules.
    Laghuvarapu S; Pathak Y; Priyakumar UD
    J Comput Chem; 2020 Mar; 41(8):790-799. PubMed ID: 31845368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable fine-grained parallelization of plane-wave-based ab initio molecular dynamics for large supercomputers.
    Vadali RV; Shi Y; Kumar S; Kale LV; Tuckerman ME; Martyna GJ
    J Comput Chem; 2004 Dec; 25(16):2006-22. PubMed ID: 15473008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The many-body expansion combined with neural networks.
    Yao K; Herr JE; Parkhill J
    J Chem Phys; 2017 Jan; 146(1):014106. PubMed ID: 28063436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.