These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 29960306)
1. Exponential propagators for the Schrödinger equation with a time-dependent potential. Bader P; Blanes S; Kopylov N J Chem Phys; 2018 Jun; 148(24):244109. PubMed ID: 29960306 [TBL] [Abstract][Full Text] [Related]
2. Simple and General Unitarity Conserving Numerical Real-Time Propagators of the Time-Dependent Schrödinger Equation Based on Magnus Expansion. Ture TM; Jang SJ J Phys Chem A; 2024 Apr; 128(14):2871-2882. PubMed ID: 38564477 [TBL] [Abstract][Full Text] [Related]
3. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods. Gómez Pueyo A; Marques MAL; Rubio A; Castro A J Chem Theory Comput; 2018 Jun; 14(6):3040-3052. PubMed ID: 29672048 [TBL] [Abstract][Full Text] [Related]
4. Symplectic time-average propagators for the Schrödinger equation with a time-dependent Hamiltonian. Blanes S; Casas F; Murua A J Chem Phys; 2017 Mar; 146(11):114109. PubMed ID: 28330361 [TBL] [Abstract][Full Text] [Related]
5. Propagators for Quantum-Classical Models: Commutator-Free Magnus Methods. Gómez Pueyo A; Blanes S; Castro A J Chem Theory Comput; 2020 Mar; 16(3):1420-1430. PubMed ID: 31999460 [TBL] [Abstract][Full Text] [Related]
6. Quantum statistical calculations and symplectic corrector algorithms. Chin SA Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046118. PubMed ID: 15169080 [TBL] [Abstract][Full Text] [Related]
7. Initial-value semiclassical propagators for the Wigner phase space representation: Formulation based on the interpretation of the Moyal equation as a Schrödinger equation. Koda S J Chem Phys; 2015 Dec; 143(24):244110. PubMed ID: 26723654 [TBL] [Abstract][Full Text] [Related]
8. Wavepacket propagation using time-sliced semiclassical initial value methods. Wallace BB; Reimers JR J Chem Phys; 2004 Dec; 121(24):12208-16. PubMed ID: 15606239 [TBL] [Abstract][Full Text] [Related]
9. Propagators for the time-dependent Kohn-Sham equations. Castro A; Marques MA; Rubio A J Chem Phys; 2004 Aug; 121(8):3425-33. PubMed ID: 15303905 [TBL] [Abstract][Full Text] [Related]
10. Quantum and electromagnetic propagation with the conjugate symmetric Lanczos method. Acevedo R; Lombardini R; Turner MA; Kinsey JL; Johnson BR J Chem Phys; 2008 Feb; 128(6):064103. PubMed ID: 18282024 [TBL] [Abstract][Full Text] [Related]
11. Improved energy estimates for a class of time-dependent perturbed Hamiltonians. Marcelli G Lett Math Phys; 2022; 112(3):51. PubMed ID: 35676940 [TBL] [Abstract][Full Text] [Related]
13. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations. Sun Z; Yang W; Zhang DH Phys Chem Chem Phys; 2012 Feb; 14(6):1827-45. PubMed ID: 22234283 [TBL] [Abstract][Full Text] [Related]
14. Accurate time propagation for the Schrodinger equation with an explicitly time-dependent Hamiltonian. Kormann K; Holmgren S; Karlsson HO J Chem Phys; 2008 May; 128(18):184101. PubMed ID: 18532793 [TBL] [Abstract][Full Text] [Related]
15. Sixth-order schemes for laser-matter interaction in the Schrödinger equation. Singh P J Chem Phys; 2019 Apr; 150(15):154111. PubMed ID: 31005117 [TBL] [Abstract][Full Text] [Related]
16. Artificial Neural Networks as Propagators in Quantum Dynamics. Secor M; Soudackov AV; Hammes-Schiffer S J Phys Chem Lett; 2021 Nov; 12(43):10654-10662. PubMed ID: 34704767 [TBL] [Abstract][Full Text] [Related]
17. A Chebychev propagator with iterative time ordering for explicitly time-dependent Hamiltonians. Ndong M; Tal-Ezer H; Kosloff R; Koch CP J Chem Phys; 2010 Feb; 132(6):064105. PubMed ID: 20151731 [TBL] [Abstract][Full Text] [Related]
18. Electron-light interaction in nonequilibrium: exact diagonalization for time-dependent Hubbard Hamiltonians. Innerberger M; Worm P; Prauhart P; Kauch A Eur Phys J Plus; 2020; 135(11):922. PubMed ID: 33240742 [TBL] [Abstract][Full Text] [Related]
19. Anatomy of path integral Monte Carlo: Algebraic derivation of the harmonic oscillator's universal discrete imaginary-time propagator and its sequential optimization. Chin SA J Chem Phys; 2023 Oct; 159(13):. PubMed ID: 37795786 [TBL] [Abstract][Full Text] [Related]
20. Derivation and application of a Green function propagator suitable for nonparaxial propagation over a two-dimensional domain. Capps DM J Opt Soc Am A Opt Image Sci Vis; 2019 Apr; 36(4):563-577. PubMed ID: 31044976 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]