These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 29960321)

  • 1. Constructing first-principles phase diagrams of amorphous Li
    Artrith N; Urban A; Ceder G
    J Chem Phys; 2018 Jun; 148(24):241711. PubMed ID: 29960321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. First-principles study of the structural and dynamic properties of the liquid and amorphous Li-Si alloys.
    Chiang HH; Lu JM; Kuo CL
    J Chem Phys; 2016 Jan; 144(3):034502. PubMed ID: 26801036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Persistent homology-based descriptor for machine-learning potential of amorphous structures.
    Minamitani E; Obayashi I; Shimizu K; Watanabe S
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Training of Machine Learning Potentials by a Randomized Atomic-System Generator.
    Choi YJ; Jhi SH
    J Phys Chem B; 2020 Oct; 124(39):8704-8710. PubMed ID: 32910653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy.
    Andolina CM; Williamson P; Saidi WA
    J Chem Phys; 2020 Apr; 152(15):154701. PubMed ID: 32321274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating the NaK Eutectic Alloy with Monte Carlo and Machine Learning.
    Reitz DM; Blaisten-Barojas E
    Sci Rep; 2019 Jan; 9(1):704. PubMed ID: 30679496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First Principles Neural Network Potentials for Reactive Simulations of Large Molecular and Condensed Systems.
    Behler J
    Angew Chem Int Ed Engl; 2017 Oct; 56(42):12828-12840. PubMed ID: 28520235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of First-Principles-Based Artificial Neural Network Potentials to Multiscale-Shock Dynamics Simulations on Solid Materials.
    Misawa M; Fukushima S; Koura A; Shimamura K; Shimojo F; Tiwari S; Nomura KI; Kalia RK; Nakano A; Vashishta P
    J Phys Chem Lett; 2020 Jun; 11(11):4536-4541. PubMed ID: 32443935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning.
    Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic modeling of amorphous silicon carbide: an approximate first-principles study in constrained solution space.
    Atta-Fynn R; Biswas P
    J Phys Condens Matter; 2009 Jul; 21(26):265801. PubMed ID: 21828477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realistic Atomistic Structure of Amorphous Silicon from Machine-Learning-Driven Molecular Dynamics.
    Deringer VL; Bernstein N; Bartók AP; Cliffe MJ; Kerber RN; Marbella LE; Grey CP; Elliott SR; Csányi G
    J Phys Chem Lett; 2018 Jun; 9(11):2879-2885. PubMed ID: 29754489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward IMRT 2D dose modeling using artificial neural networks: a feasibility study.
    Kalantzis G; Vasquez-Quino LA; Zalman T; Pratx G; Lei Y
    Med Phys; 2011 Oct; 38(10):5807-17. PubMed ID: 21992395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic origin for the phase transition from amorphous Li(x)Si to crystalline Li15Si4.
    Gu M; Wang Z; Connell JG; Perea DE; Lauhon LJ; Gao F; Wang C
    ACS Nano; 2013 Jul; 7(7):6303-9. PubMed ID: 23795599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An accurate interatomic potential for the TiAlNb ternary alloy developed by deep neural network learning method.
    Lu J; Wang J; Wan K; Chen Y; Wang H; Shi X
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37212410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins of structural and electronic transitions in disordered silicon.
    Deringer VL; Bernstein N; Csányi G; Ben Mahmoud C; Ceriotti M; Wilson M; Drabold DA; Elliott SR
    Nature; 2021 Jan; 589(7840):59-64. PubMed ID: 33408379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Force Field-Aided Cluster Expansion Approach to Phase Diagram of Alloyed Materials.
    Xie JZ; Zhou XY; Jin B; Jiang H
    J Chem Theory Comput; 2024 Jun; ():. PubMed ID: 38940547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated development of artificial neural networks for clinical purposes: Application for predicting the outcome of choledocholithiasis surgery.
    Vukicevic AM; Stojadinovic M; Radovic M; Djordjevic M; Cirkovic BA; Pejovic T; Jovicic G; Filipovic N
    Comput Biol Med; 2016 Aug; 75():80-9. PubMed ID: 27261565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nearly defect-free dynamical models of disordered solids: The case of amorphous silicon.
    Atta-Fynn R; Biswas P
    J Chem Phys; 2018 May; 148(20):204503. PubMed ID: 29865802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic modeling of crystal-to-amorphous transition and associated kinetics in the Ni-Nb system by molecular dynamics simulations.
    Dai XD; Li JH; Liu BX
    J Phys Chem B; 2005 Mar; 109(10):4717-25. PubMed ID: 16851553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate amorphous silica surface models from first-principles thermodynamics of surface dehydroxylation.
    Ewing CS; Bhavsar S; Veser G; McCarthy JJ; Johnson JK
    Langmuir; 2014 May; 30(18):5133-41. PubMed ID: 24793021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.