These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29960340)

  • 1. Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(101¯0) interface from a high-dimensional neural network potential.
    Quaranta V; Hellström M; Behler J; Kullgren J; Mitev PD; Hermansson K
    J Chem Phys; 2018 Jun; 148(24):241720. PubMed ID: 29960340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton-Transfer Mechanisms at the Water-ZnO Interface: The Role of Presolvation.
    Quaranta V; Hellström M; Behler J
    J Phys Chem Lett; 2017 Apr; 8(7):1476-1483. PubMed ID: 28296415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy.
    Banno M; Ohta K; Yamaguchi S; Hirai S; Tominaga K
    Acc Chem Res; 2009 Sep; 42(9):1259-69. PubMed ID: 19754112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational investigation of structural and electronic properties of aqueous interfaces of GaN, ZnO, and a GaN/ZnO alloy.
    Kharche N; Hybertsen MS; Muckerman JT
    Phys Chem Chem Phys; 2014 Jun; 16(24):12057-66. PubMed ID: 24686328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen bonding and vibrational energy relaxation of interfacial water: A full DFT molecular dynamics simulation.
    Jeon J; Hsieh CS; Nagata Y; Bonn M; Cho M
    J Chem Phys; 2017 Jul; 147(4):044707. PubMed ID: 28764370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anharmonic vibrational frequencies and vibrationally averaged structures and nuclear magnetic resonance parameters of FHF-.
    Hirata S; Yagi K; Perera SA; Yamazaki S; Hirao K
    J Chem Phys; 2008 Jun; 128(21):214305. PubMed ID: 18537420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimension of discrete variable representation for mixed quantum/classical computation of three lowest vibrational states of OH stretching in liquid water.
    Jeon K; Yang M
    J Chem Phys; 2017 Feb; 146(5):054107. PubMed ID: 28178837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2D calculation of anharmonic OH vibrations in a layered hydroxide crystal.
    Gajewski G; Mitev PD; Hermansson K
    J Chem Phys; 2008 Aug; 129(6):064502. PubMed ID: 18715080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural network molecular dynamics simulations of solid-liquid interfaces: water at low-index copper surfaces.
    Natarajan SK; Behler J
    Phys Chem Chem Phys; 2016 Oct; 18(41):28704-28725. PubMed ID: 27722603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using MD snapshots in ab initio and DFT calculations: OH vibrations in the first hydration shell around Li+(aq).
    Pejov L; Spångberg D; Hermansson K
    J Phys Chem A; 2005 Jun; 109(23):5144-52. PubMed ID: 16833869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface-specific ultrafast two-dimensional vibrational spectroscopy.
    Bredenbeck J; Ghosh A; Nienhuys HK; Bonn M
    Acc Chem Res; 2009 Sep; 42(9):1332-42. PubMed ID: 19441810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Dec; 141(22):22D505. PubMed ID: 25494776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of anharmonic OH phonon dispersion curves for the Mg(OH)2 crystal.
    Mitev PD; Hermansson K; Briels WJ
    J Chem Phys; 2010 Jul; 133(3):034120. PubMed ID: 20649321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multidimensional local mode calculations for the vibrational spectra of OH(-)(H2O)2 and OH(-)(H2O)2·Ar.
    Morita M; Takahashi K
    Phys Chem Chem Phys; 2013 Sep; 15(36):14973-85. PubMed ID: 23912845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and determination of the {Fe(NO)(2)} core vibrational features in dinitrosyl-iron complexes from experiment, normal coordinate analysis, and density functional theory: an avenue for probing the nitric oxide oxidation state.
    Dai RJ; Ke SC
    J Phys Chem B; 2007 Mar; 111(9):2335-46. PubMed ID: 17295535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anharmonic calculations of frequencies and intensities of OH stretching vibrations of (R)-1,3-butanediol conformers in the fundamentals and first overtones by density functional theory.
    Futami Y; Minamoto C; Kudoh S
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():251-254. PubMed ID: 29501370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vibrational energy relaxation of interfacial OH on a water-covered α-Al
    Melani G; Nagata Y; Saalfrank P
    Phys Chem Chem Phys; 2021 Apr; 23(13):7714-7723. PubMed ID: 32857089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional
    Hellström M; Quaranta V; Behler J
    Chem Sci; 2019 Jan; 10(4):1232-1243. PubMed ID: 30774924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.