BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 29960350)

  • 1. Machine learning of molecular properties: Locality and active learning.
    Gubaev K; Podryabinkin EV; Shapeev AV
    J Chem Phys; 2018 Jun; 148(24):241727. PubMed ID: 29960350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Message-passing neural networks for high-throughput polymer screening.
    St John PC; Phillips C; Kemper TW; Wilson AN; Guan Y; Crowley MF; Nimlos MR; Larsen RE
    J Chem Phys; 2019 Jun; 150(23):234111. PubMed ID: 31228909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient data preprocessing approach for large scale medical data mining.
    Hu YH; Lin WC; Tsai CF; Ke SW; Chen CW
    Technol Health Care; 2015; 23(2):153-60. PubMed ID: 25515050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Optimization of Training Sets for Improved Machine Learning Models of Molecular Properties.
    Browning NJ; Ramakrishnan R; von Lilienfeld OA; Roethlisberger U
    J Phys Chem Lett; 2017 Apr; 8(7):1351-1359. PubMed ID: 28257210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare.
    Mozaffari-Kermani M; Sur-Kolay S; Raghunathan A; Jha NK
    IEEE J Biomed Health Inform; 2015 Nov; 19(6):1893-905. PubMed ID: 25095272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Less is more: Sampling chemical space with active learning.
    Smith JS; Nebgen B; Lubbers N; Isayev O; Roitberg AE
    J Chem Phys; 2018 Jun; 148(24):241733. PubMed ID: 29960353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and Nonlocality in Chemical Space.
    Hansen K; Biegler F; Ramakrishnan R; Pronobis W; von Lilienfeld OA; Müller KR; Tkatchenko A
    J Phys Chem Lett; 2015 Jun; 6(12):2326-31. PubMed ID: 26113956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning model for non-equilibrium structures and energies of simple molecules.
    Iype E; Urolagin S
    J Chem Phys; 2019 Jan; 150(2):024307. PubMed ID: 30646726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Rise of Neural Networks for Materials and Chemical Dynamics.
    Kulichenko M; Smith JS; Nebgen B; Li YW; Fedik N; Boldyrev AI; Lubbers N; Barros K; Tretiak S
    J Phys Chem Lett; 2021 Jul; 12(26):6227-6243. PubMed ID: 34196559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro molecular machine learning algorithm via symmetric internal loops of DNA.
    Lee JH; Lee SH; Baek C; Chun H; Ryu JH; Kim JW; Deaton R; Zhang BT
    Biosystems; 2017 Aug; 158():1-9. PubMed ID: 28465242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features.
    Nandi S; Subramanian A; Sarkar RR
    Mol Biosyst; 2017 Jul; 13(8):1584-1596. PubMed ID: 28671706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-guided representation for accurate graph-based molecular machine learning.
    Na GS; Chang H; Kim HW
    Phys Chem Chem Phys; 2020 Sep; 22(33):18526-18535. PubMed ID: 32780040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules.
    Pronobis W; Tkatchenko A; Müller KR
    J Chem Theory Comput; 2018 Jun; 14(6):2991-3003. PubMed ID: 29750522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations.
    Wang G; Wang C; Zhang X; Li Z; Zhou J; Sun Z
    iScience; 2024 May; 27(5):109673. PubMed ID: 38646181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel maximum-margin training algorithms for supervised neural networks.
    Ludwig O; Nunes U
    IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable active learning for multiclass image classification.
    Joshi AJ; Porikli F; Papanikolopoulos NP
    IEEE Trans Pattern Anal Mach Intell; 2012 Nov; 34(11):2259-73. PubMed ID: 22997129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning-based framework to identify type 2 diabetes through electronic health records.
    Zheng T; Xie W; Xu L; He X; Zhang Y; You M; Yang G; Chen Y
    Int J Med Inform; 2017 Jan; 97():120-127. PubMed ID: 27919371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuzzy ARTMAP prediction of biological activities for potential HIV-1 protease inhibitors using a small molecular data set.
    Andonie R; Fabry-Asztalos L; Abdul-Wahid CB; Abdul-Wahid S; Barker GI; Magill LC
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):80-93. PubMed ID: 21071799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.