These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 29960359)
1. Size-independent neural networks based first-principles method for accurate prediction of heat of formation of fuels. Yang G; Wu J; Chen S; Zhou W; Sun J; Chen G J Chem Phys; 2018 Jun; 148(24):241738. PubMed ID: 29960359 [TBL] [Abstract][Full Text] [Related]
2. Alternative approach to chemical accuracy: a neural networks-based first-principles method for heat of formation of molecules made of H, C, N, O, F, S, and Cl. Sun J; Wu J; Song T; Hu L; Shan K; Chen G J Phys Chem A; 2014 Oct; 118(39):9120-31. PubMed ID: 24979488 [TBL] [Abstract][Full Text] [Related]
3. Accurate prediction of heat of formation by combining Hartree-Fock/density functional theory calculation with linear regression correction approach. Duan XM; Song GL; Li ZH; Wang XJ; Chen GH; Fan KN J Chem Phys; 2004 Oct; 121(15):7086-95. PubMed ID: 15473774 [TBL] [Abstract][Full Text] [Related]
4. Accurate prediction of heats of formation by a combined method of B3LYP and neural network correction. Wu J; Xu X J Comput Chem; 2009 Jul; 30(9):1424-44. PubMed ID: 19037856 [TBL] [Abstract][Full Text] [Related]
5. Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods. Grimme S J Phys Chem A; 2005 Apr; 109(13):3067-77. PubMed ID: 16833631 [TBL] [Abstract][Full Text] [Related]
6. A big data approach to the ultra-fast prediction of DFT-calculated bond energies. Qu X; Latino DA; Aires-de-Sousa J J Cheminform; 2013; 5():34. PubMed ID: 23849655 [TBL] [Abstract][Full Text] [Related]
7. Support vector machine regression (LS-SVM)--an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data? Balabin RM; Lomakina EI Phys Chem Chem Phys; 2011 Jun; 13(24):11710-8. PubMed ID: 21594265 [TBL] [Abstract][Full Text] [Related]
8. Accurate Prediction of Adiabatic Ionization Potentials of Organic Molecules using Quantum Chemistry Assisted Machine Learning. Dandu NK; Ward L; Assary RS; Redfern PC; Curtiss LA J Phys Chem A; 2023 Jul; 127(28):5914-5920. PubMed ID: 37406209 [TBL] [Abstract][Full Text] [Related]
9. Quantum-Chemically Informed Machine Learning: Prediction of Energies of Organic Molecules with 10 to 14 Non-hydrogen Atoms. Dandu N; Ward L; Assary RS; Redfern PC; Narayanan B; Foster IT; Curtiss LA J Phys Chem A; 2020 Jul; 124(28):5804-5811. PubMed ID: 32539388 [TBL] [Abstract][Full Text] [Related]
11. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules. Pronobis W; Tkatchenko A; Müller KR J Chem Theory Comput; 2018 Jun; 14(6):2991-3003. PubMed ID: 29750522 [TBL] [Abstract][Full Text] [Related]
12. Improving the B3LYP bond energies by using the X1 method. Wu J; Xu X J Chem Phys; 2008 Oct; 129(16):164103. PubMed ID: 19045243 [TBL] [Abstract][Full Text] [Related]
13. The X1 method for accurate and efficient prediction of heats of formation. Wu J; Xu X J Chem Phys; 2007 Dec; 127(21):214105. PubMed ID: 18067347 [TBL] [Abstract][Full Text] [Related]
14. A localized orbital analysis of the thermochemical errors in hybrid density functional theory: achieving chemical accuracy via a simple empirical correction scheme. Friesner RA; Knoll EH; Cao Y J Chem Phys; 2006 Sep; 125(12):124107. PubMed ID: 17014166 [TBL] [Abstract][Full Text] [Related]
15. Improving B3LYP heats of formation with three-dimensional molecular descriptors. Zhou Y; Wu J; Xu X J Comput Chem; 2016 May; 37(13):1175-90. PubMed ID: 26887921 [TBL] [Abstract][Full Text] [Related]
16. Neural network approach to quantum-chemistry data: accurate prediction of density functional theory energies. Balabin RM; Lomakina EI J Chem Phys; 2009 Aug; 131(7):074104. PubMed ID: 19708729 [TBL] [Abstract][Full Text] [Related]
17. Constant size descriptors for accurate machine learning models of molecular properties. Collins CR; Gordon GJ; von Lilienfeld OA; Yaron DJ J Chem Phys; 2018 Jun; 148(24):241718. PubMed ID: 29960361 [TBL] [Abstract][Full Text] [Related]
18. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. Schwabe T; Grimme S Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790 [TBL] [Abstract][Full Text] [Related]
19. Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure-Property Relationships. Janet JP; Kulik HJ J Phys Chem A; 2017 Nov; 121(46):8939-8954. PubMed ID: 29095620 [TBL] [Abstract][Full Text] [Related]