These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 29960361)

  • 1. Constant size descriptors for accurate machine learning models of molecular properties.
    Collins CR; Gordon GJ; von Lilienfeld OA; Yaron DJ
    J Chem Phys; 2018 Jun; 148(24):241718. PubMed ID: 29960361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure-Property Relationships.
    Janet JP; Kulik HJ
    J Phys Chem A; 2017 Nov; 121(46):8939-8954. PubMed ID: 29095620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error.
    Faber FA; Hutchison L; Huang B; Gilmer J; Schoenholz SS; Dahl GE; Vinyals O; Kearnes S; Riley PF; von Lilienfeld OA
    J Chem Theory Comput; 2017 Nov; 13(11):5255-5264. PubMed ID: 28926232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules.
    Pronobis W; Tkatchenko A; Müller KR
    J Chem Theory Comput; 2018 Jun; 14(6):2991-3003. PubMed ID: 29750522
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bond Type Restricted Property Weighted Radial Distribution Functions for Accurate Machine Learning Prediction of Atomization Energies.
    Krykunov M; Woo TK
    J Chem Theory Comput; 2018 Oct; 14(10):5229-5237. PubMed ID: 30148628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of atomization energy using graph kernel and active learning.
    Tang YH; de Jong WA
    J Chem Phys; 2019 Jan; 150(4):044107. PubMed ID: 30709286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory.
    Zope RR; Dunlap BI
    J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning Prediction of Nine Molecular Properties Based on the SMILES Representation of the QM9 Quantum-Chemistry Dataset.
    Pinheiro GA; Mucelini J; Soares MD; Prati RC; Da Silva JLF; Quiles MG
    J Phys Chem A; 2020 Nov; 124(47):9854-9866. PubMed ID: 33174750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum-Chemically Informed Machine Learning: Prediction of Energies of Organic Molecules with 10 to 14 Non-hydrogen Atoms.
    Dandu N; Ward L; Assary RS; Redfern PC; Narayanan B; Foster IT; Curtiss LA
    J Phys Chem A; 2020 Jul; 124(28):5804-5811. PubMed ID: 32539388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid localized graph kernel for machine learning energy-related properties of molecules and solids.
    Casier B; Chagas da Silva M; Badawi M; Pascale F; Bučko T; Lebègue S; Rocca D
    J Comput Chem; 2021 Jul; 42(20):1390-1401. PubMed ID: 34009668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast and accurate modeling of molecular atomization energies with machine learning.
    Rupp M; Tkatchenko A; Müller KR; von Lilienfeld OA
    Phys Rev Lett; 2012 Feb; 108(5):058301. PubMed ID: 22400967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of Engineered and Learned Molecular Representations in Predicting Organic Reactivity, Selectivity, and Chemical Properties.
    Gallegos LC; Luchini G; St John PC; Kim S; Paton RS
    Acc Chem Res; 2021 Feb; 54(4):827-836. PubMed ID: 33534534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparing molecules and solids across structural and alchemical space.
    De S; Bartók AP; Csányi G; Ceriotti M
    Phys Chem Chem Phys; 2016 May; 18(20):13754-69. PubMed ID: 27101873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective Molecular Descriptors for Chemical Accuracy at DFT Cost: Fragmentation, Error-Cancellation, and Machine Learning.
    Collins EM; Raghavachari K
    J Chem Theory Comput; 2020 Aug; 16(8):4938-4950. PubMed ID: 32678593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete Derivatives for Atom-Pairs as a Novel Graph-Theoretical Invariant for Generating New Molecular Descriptors: Orthogonality, Interpretation and QSARs/QSPRs on Benchmark Databases.
    Martínez-Santiago O; Millán-Cabrera R; Marrero-Ponce Y; Barigye SJ; Martínez-López Y; Torrens F; Pérez-Giménez F
    Mol Inform; 2014 May; 33(5):343-68. PubMed ID: 27485891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning molecular energies using localized graph kernels.
    Ferré G; Haut T; Barros K
    J Chem Phys; 2017 Mar; 146(11):114107. PubMed ID: 28330348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine Learning Estimation of Atom Condensed Fukui Functions.
    Zhang Q; Zheng F; Zhao T; Qu X; Aires-de-Sousa J
    Mol Inform; 2016 Feb; 35(2):62-9. PubMed ID: 27491791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graph-Based Approaches for Predicting Solvation Energy in Multiple Solvents: Open Datasets and Machine Learning Models.
    Ward L; Dandu N; Blaiszik B; Narayanan B; Assary RS; Redfern PC; Foster I; Curtiss LA
    J Phys Chem A; 2021 Jul; 125(27):5990-5998. PubMed ID: 34191512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kernel based quantum machine learning at record rate: Many-body distribution functionals as compact representations.
    Khan D; Heinen S; von Lilienfeld OA
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37462285
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.