These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 29960368)

  • 1. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing molecules and solids across structural and alchemical space.
    De S; Bartók AP; Csányi G; Ceriotti M
    Phys Chem Chem Phys; 2016 May; 18(20):13754-69. PubMed ID: 27101873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning molecular energies using localized graph kernels.
    Ferré G; Haut T; Barros K
    J Chem Phys; 2017 Mar; 146(11):114107. PubMed ID: 28330348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Identification of Atom-Centered Symmetry Functions for the Development of Neural Network Potentials.
    Mudassir MW; Goverapet Srinivasan S; Mynam M; Rai B
    J Phys Chem A; 2022 Nov; 126(44):8337-8347. PubMed ID: 36300823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaussian Moments as Physically Inspired Molecular Descriptors for Accurate and Scalable Machine Learning Potentials.
    Zaverkin V; Kästner J
    J Chem Theory Comput; 2020 Aug; 16(8):5410-5421. PubMed ID: 32672968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
    Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP
    J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Descriptors representing two- and three-body atomic distributions and their effects on the accuracy of machine-learned inter-atomic potentials.
    Jinnouchi R; Karsai F; Verdi C; Asahi R; Kresse G
    J Chem Phys; 2020 Jun; 152(23):234102. PubMed ID: 32571051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks.
    Tsubaki M; Mizoguchi T
    J Phys Chem Lett; 2018 Oct; 9(19):5733-5741. PubMed ID: 30081630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atom-centered symmetry functions for constructing high-dimensional neural network potentials.
    Behler J
    J Chem Phys; 2011 Feb; 134(7):074106. PubMed ID: 21341827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiscale machine-learning interatomic potentials for ferromagnetic and liquid iron.
    Byggmästar J; Nikoulis G; Fellman A; Granberg F; Djurabekova F; Nordlund K
    J Phys Condens Matter; 2022 May; 34(30):. PubMed ID: 35550572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improve the performance of machine-learning potentials by optimizing descriptors.
    Gao H; Wang J; Sun J
    J Chem Phys; 2019 Jun; 150(24):244110. PubMed ID: 31255049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Atomic Simulation via Machine Learning Potentials Constructed by Global Potential Energy Surface Exploration.
    Kang PL; Shang C; Liu ZP
    Acc Chem Res; 2020 Oct; 53(10):2119-2129. PubMed ID: 32940999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Permutation-invariant distance between atomic configurations.
    Ferré G; Maillet JB; Stoltz G
    J Chem Phys; 2015 Sep; 143(10):104114. PubMed ID: 26374024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent homology-based descriptor for machine-learning potential of amorphous structures.
    Minamitani E; Obayashi I; Shimizu K; Watanabe S
    J Chem Phys; 2023 Aug; 159(8):. PubMed ID: 37606336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel approach to describe chemical environments in high-dimensional neural network potentials.
    Kocer E; Mason JK; Erturk H
    J Chem Phys; 2019 Apr; 150(15):154102. PubMed ID: 31005106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Many-Body Descriptors for Predicting Molecular Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in Molecules.
    Pronobis W; Tkatchenko A; Müller KR
    J Chem Theory Comput; 2018 Jun; 14(6):2991-3003. PubMed ID: 29750522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials.
    Gastegger M; Schwiedrzik L; Bittermann M; Berzsenyi F; Marquetand P
    J Chem Phys; 2018 Jun; 148(24):241709. PubMed ID: 29960372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four Generations of High-Dimensional Neural Network Potentials.
    Behler J
    Chem Rev; 2021 Aug; 121(16):10037-10072. PubMed ID: 33779150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints.
    Rahaman O; Gagliardi A
    J Chem Inf Model; 2020 Dec; 60(12):5971-5983. PubMed ID: 33118351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pair-distribution-function guided optimization of fingerprints for atom-centered neural network potentials.
    Li L; Li H; Seymour ID; Koziol L; Henkelman G
    J Chem Phys; 2020 Jun; 152(22):224102. PubMed ID: 32534535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.