These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29960372)

  • 1. wACSF-Weighted atom-centered symmetry functions as descriptors in machine learning potentials.
    Gastegger M; Schwiedrzik L; Bittermann M; Berzsenyi F; Marquetand P
    J Chem Phys; 2018 Jun; 148(24):241709. PubMed ID: 29960372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning approach for describing vibrational solvatochromism.
    Kwac K; Cho M
    J Chem Phys; 2020 May; 152(17):174101. PubMed ID: 32384851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four Generations of High-Dimensional Neural Network Potentials.
    Behler J
    Chem Rev; 2021 Aug; 121(16):10037-10072. PubMed ID: 33779150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A shared-weight neural network architecture for predicting molecular properties.
    Profitt TA; Pearson JK
    Phys Chem Chem Phys; 2019 Dec; 21(47):26175-26183. PubMed ID: 31750845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Approach for Describing Water OH Stretch Vibrations.
    Kwac K; Freedman H; Cho M
    J Chem Theory Comput; 2021 Oct; 17(10):6353-6365. PubMed ID: 34498885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic Identification of Atom-Centered Symmetry Functions for the Development of Neural Network Potentials.
    Mudassir MW; Goverapet Srinivasan S; Mynam M; Rai B
    J Phys Chem A; 2022 Nov; 126(44):8337-8347. PubMed ID: 36300823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Unsupervised Machine Learning Approach for the Automatic Construction of Local Chemical Descriptors.
    Gallegos M; Isamura BK; Popelier PLA; Martín Pendás Á
    J Chem Inf Model; 2024 Apr; 64(8):3059-3079. PubMed ID: 38498942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Symmetry Functions to Large Chemical Spaces Using a Convolutional Neural Network.
    Selvaratnam B; Koodali RT; Miró P
    J Chem Inf Model; 2020 Apr; 60(4):1928-1935. PubMed ID: 32053367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transferable Multilevel Attention Neural Network for Accurate Prediction of Quantum Chemistry Properties via Multitask Learning.
    Liu Z; Lin L; Jia Q; Cheng Z; Jiang Y; Guo Y; Ma J
    J Chem Inf Model; 2021 Mar; 61(3):1066-1082. PubMed ID: 33629839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials.
    Imbalzano G; Anelli A; Giofré D; Klees S; Behler J; Ceriotti M
    J Chem Phys; 2018 Jun; 148(24):241730. PubMed ID: 29960368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular partition coefficient from machine learning with polarization and entropy embedded atom-centered symmetry functions.
    Zhu Q; Jia Q; Liu Z; Ge Y; Gu X; Cui Z; Fan M; Ma J
    Phys Chem Chem Phys; 2022 Oct; 24(38):23082-23088. PubMed ID: 36134471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
    Zuo Y; Chen C; Li X; Deng Z; Chen Y; Behler J; Csányi G; Shapeev AV; Thompson AP; Wood MA; Ong SP
    J Phys Chem A; 2020 Jan; 124(4):731-745. PubMed ID: 31916773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parametrization of analytic interatomic potential functions using neural networks.
    Malshe M; Narulkar R; Raff LM; Hagan M; Bukkapatnam S; Komanduri R
    J Chem Phys; 2008 Jul; 129(4):044111. PubMed ID: 18681638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast and Accurate Molecular Property Prediction: Learning Atomic Interactions and Potentials with Neural Networks.
    Tsubaki M; Mizoguchi T
    J Phys Chem Lett; 2018 Oct; 9(19):5733-5741. PubMed ID: 30081630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimized symmetry functions for machine-learning interatomic potentials of multicomponent systems.
    Rostami S; Amsler M; Ghasemi SA
    J Chem Phys; 2018 Sep; 149(12):124106. PubMed ID: 30278670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atom-centered symmetry functions for constructing high-dimensional neural network potentials.
    Behler J
    J Chem Phys; 2011 Feb; 134(7):074106. PubMed ID: 21341827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5.
    Eckhoff M; Behler J
    J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of the Characteristics of Quantum Chemical Databases on Machine Learning Prediction of Tautomerization Energies.
    Vazquez-Salazar LI; Boittier ED; Unke OT; Meuwly M
    J Chem Theory Comput; 2021 Aug; 17(8):4769-4785. PubMed ID: 34288675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative structure-retention relationships of pesticides in reversed-phase high-performance liquid chromatography based on WHIM and GETAWAY molecular descriptors.
    D'Archivio AA; Maggi MA; Mazzeo P; Ruggieri F
    Anal Chim Acta; 2008 Nov; 628(2):162-72. PubMed ID: 18929004
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.