BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 29960380)

  • 1. Fermi resonance in OH-stretch vibrational spectroscopy of liquid water and the water hexamer.
    Kananenka AA; Skinner JL
    J Chem Phys; 2018 Jun; 148(24):244107. PubMed ID: 29960380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling of three intramolecular vibration modes of liquid H
    Efimov YY; Naberukhin YI
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 244():118772. PubMed ID: 32846302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed quantum/classical approach to OH-stretch inelastic incoherent neutron scattering spectroscopy for ambient and supercooled liquid water and ice Ih.
    Shi L; Skinner JL
    J Chem Phys; 2015 Jul; 143(1):014503. PubMed ID: 26156484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively.
    Ni Y; Skinner JL
    J Chem Phys; 2015 Jul; 143(1):014502. PubMed ID: 26156483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.
    Elsaesser T
    Acc Chem Res; 2009 Sep; 42(9):1220-8. PubMed ID: 19425543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of liquid methanol. II. Unified assignment of infrared, Raman, and sum frequency generation vibrational spectra in methyl C-H stretching region.
    Ishiyama T; Sokolov VV; Morita A
    J Chem Phys; 2011 Jan; 134(2):024510. PubMed ID: 21241123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational Coupling in Solvated H
    Huang QR; Li YC; Nishigori T; Katada M; Fujii A; Kuo JL
    J Phys Chem Lett; 2020 Dec; 11(23):10067-10072. PubMed ID: 33179938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical vibrational spectra of OH(-)(H2O)2: the effect of quantum distribution and vibrational coupling.
    Ogata Y; Kawashima Y; Takahashi K; Tachikawa M
    Phys Chem Chem Phys; 2015 Oct; 17(38):25505-15. PubMed ID: 26365920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disentangling Coupling Effects in the Infrared Spectra of Liquid Water.
    Hunter KM; Shakib FA; Paesani F
    J Phys Chem B; 2018 Nov; 122(47):10754-10761. PubMed ID: 30403350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study of the Raman spectrum of CCl4 Fermi resonance].
    Gao SQ; He JN; Li RF; Zuo J; Li ZK; Cao B; Li ZW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):2042-4. PubMed ID: 18306791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delocalization and stretch-bend mixing of the HOH bend in liquid water.
    Carpenter WB; Fournier JA; Biswas R; Voth GA; Tokmakoff A
    J Chem Phys; 2017 Aug; 147(8):084503. PubMed ID: 28863511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating two-dimensional infrared-Raman and Raman spectroscopies for intermolecular and intramolecular modes of liquid water.
    Ito H; Tanimura Y
    J Chem Phys; 2016 Feb; 144(7):074201. PubMed ID: 26896979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robustness of Frequency, Transition Dipole, and Coupling Maps for Water Vibrational Spectroscopy.
    Gruenbaum SM; Tainter CJ; Shi L; Ni Y; Skinner JL
    J Chem Theory Comput; 2013 Jul; 9(7):3109-17. PubMed ID: 26583990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anharmonic coupling behind vibrational spectra of solvated ammonium: lighting up overtone states by Fermi resonance through tuning solvation environments.
    Lin CK; Huang QR; Kuo JL
    Phys Chem Chem Phys; 2020 Oct; 22(41):24059-24069. PubMed ID: 33078779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental evidence of Fermi resonances in isotopically dilute water from ultrafast broadband IR spectroscopy.
    De Marco L; Ramasesha K; Tokmakoff A
    J Phys Chem B; 2013 Dec; 117(49):15319-27. PubMed ID: 23638966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Vibrational Sum Frequency Generation Spectra of Interfacial Water on a Gold Surface: The Role of the Fermi Resonance.
    Shen H; Chen L; Zou X; Wu Q
    J Phys Chem B; 2024 Jun; ():. PubMed ID: 38922305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure tuning of the Fermi resonance in liquid methanol: implications for the analysis of high-pressure vibrational spectroscopy experiments.
    Arencibia A; Taravillo M; Cáceres M; Núñez J; Baonza VG
    J Chem Phys; 2005 Dec; 123(21):214502. PubMed ID: 16356052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Infrared overtone spectroscopy and vibrational analysis of a Fermi resonance in nitric acid: Experiment and theory.
    Konen IM; Li EX; Lester MI; Vázquez J; Stanton JF
    J Chem Phys; 2006 Aug; 125(7):074310. PubMed ID: 16942342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect on Fermi Resonance by Some External Fields: Investigation of Fermi Resonance According to Raman Spectra].
    Jiang XL; Sun CL; Zhou M; Li DF; Men ZW; Li ZW; Gao SQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Mar; 35(3):635-9. PubMed ID: 26117870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IR and Raman spectra of liquid water: theory and interpretation.
    Auer BM; Skinner JL
    J Chem Phys; 2008 Jun; 128(22):224511. PubMed ID: 18554033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.