These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 29960406)

  • 1. On the emergence of critical regions at the onset of thermoacoustic instability in a turbulent combustor.
    Unni VR; Krishnan A; Manikandan R; George NB; Sujith RI; Marwan N; Kurths J
    Chaos; 2018 Jun; 28(6):063125. PubMed ID: 29960406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recurrence networks to study dynamical transitions in a turbulent combustor.
    Godavarthi V; Unni VR; Gopalakrishnan EA; Sujith RI
    Chaos; 2017 Jun; 27(6):063113. PubMed ID: 28679226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condensation in the phase space and network topology during transition from chaos to order in turbulent thermoacoustic systems.
    Tandon S; Sujith RI
    Chaos; 2021 Apr; 31(4):043126. PubMed ID: 34251230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal patterns corresponding to phase synchronization and generalized synchronization states of thermoacoustic instability.
    Pawar SA; Raghunath MP; K Valappil R; Krishnan A; Manoj K; Sujith RI
    Chaos; 2024 May; 34(5):. PubMed ID: 38717395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical systems approach to study thermoacoustic transitions in a liquid rocket combustor.
    Kasthuri P; Pavithran I; Pawar SA; Sujith RI; Gejji R; Anderson W
    Chaos; 2019 Oct; 29(10):103115. PubMed ID: 31675825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying optimal location for control of thermoacoustic instability through statistical analysis of saddle point trajectories.
    Premchand CP; Krishnan A; Raghunathan M; Midhun PR; Reeja KV; Sujith RI; Nair V
    Chaos; 2024 Aug; 34(8):. PubMed ID: 39141789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation of limit cycle oscillations in a turbulent thermoacoustic system via delayed acoustic self-feedback.
    Sahay A; Kushwaha A; Pawar SA; P R M; Dhadphale JM; Sujith RI
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal dynamics and early detection of thermoacoustic combustion instability in a model rocket combustor.
    Hashimoto T; Shibuya H; Gotoda H; Ohmichi Y; Matsuyama S
    Phys Rev E; 2019 Mar; 99(3-1):032208. PubMed ID: 30999467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled interaction between unsteady flame dynamics and acoustic field in a turbulent combustor.
    Godavarthi V; Pawar SA; Unni VR; Sujith RI; Marwan N; Kurths J
    Chaos; 2018 Nov; 28(11):113111. PubMed ID: 30501211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting deterministic nature of pressure measurements from a turbulent combustor.
    Tony J; Gopalakrishnan EA; Sreelekha E; Sujith RI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Dec; 92(6):062902. PubMed ID: 26764769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating thermoacoustic instability mitigation dynamics with a Kuramoto model for flamelet oscillators.
    Dutta AK; Ramachandran G; Chaudhuri S
    Phys Rev E; 2019 Mar; 99(3-1):032215. PubMed ID: 30999463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex-network theory.
    Murayama S; Kinugawa H; Tokuda IT; Gotoda H
    Phys Rev E; 2018 Feb; 97(2-1):022223. PubMed ID: 29548163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaos, synchronization, and desynchronization in a liquid-fueled diffusion-flame combustor with an intrinsic hydrodynamic mode.
    Guan Y; Li LKB; Ahn B; Kim KT
    Chaos; 2019 May; 29(5):053124. PubMed ID: 31154771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear dynamics and intermittency in a turbulent reacting wake with density ratio as bifurcation parameter.
    Suresha S; Sujith RI; Emerson B; Lieuwen T
    Phys Rev E; 2016 Oct; 94(4-1):042206. PubMed ID: 27841488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system.
    Singh S; Kumar Dutta A; Dhadphale JM; Roy A; Sujith RI; Chaudhuri S
    Chaos; 2023 Apr; 33(4):. PubMed ID: 37097956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capturing multifractality of pressure fluctuations in thermoacoustic systems using fractional-order derivatives.
    Varghese AJ; Chechkin A; Metzler R; Sujith RI
    Chaos; 2021 Mar; 31(3):033108. PubMed ID: 33810715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural ODE to model and prognose thermoacoustic instability.
    Dhadphale JM; Unni VR; Saha A; Sujith RI
    Chaos; 2022 Jan; 32(1):013131. PubMed ID: 35105133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recurrence network analysis exploring the routes to thermoacoustic instability in a Rijke tube with inverse diffusion flame.
    Bhattacharya A; De S; Mondal S; Mukhopadhyay A; Sen S
    Chaos; 2021 Mar; 31(3):033117. PubMed ID: 33810714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of degeneration process in combustion instability based on dynamical systems theory.
    Gotoda H; Okuno Y; Hayashi K; Tachibana S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052906. PubMed ID: 26651761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early detection of thermoacoustic instability in a staged single-sector combustor for aircraft engines using symbolic dynamics-based approach.
    Baba K; Kishiya S; Gotoda H; Shoji T; Yoshida S
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37408155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.