These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29960427)

  • 1. Uncertainty of speech level parameters measured with a contact-sensor-based device and a headworn microphone.
    Astolfi A; Castellana A; Carullo A; Puglisi GE
    J Acoust Soc Am; 2018 Jun; 143(6):EL496. PubMed ID: 29960427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined Use of Standard and Throat Microphones for Measurement of Acoustic Voice Parameters and Voice Categorization.
    Uloza V; Padervinskis E; Uloziene I; Saferis V; Verikas A
    J Voice; 2015 Sep; 29(5):552-9. PubMed ID: 25795349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Microphone Type on Acoustical Measures of Synthesized Vowels.
    Kisenwether JS; Sataloff RT
    J Voice; 2015 Sep; 29(5):548-51. PubMed ID: 25998411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mobile Digital Recording: Adequacy of the iRig and iOS Device for Acoustic and Perceptual Analysis of Normal Voice.
    Oliveira G; Fava G; Baglione M; Pimpinella M
    J Voice; 2017 Mar; 31(2):236-242. PubMed ID: 27423820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of the quantities measured by four vocal dosimeters and its uncertainty.
    Bottalico P; Ipsaro Passione I; Astolfi A; Carullo A; Hunter EJ
    J Acoust Soc Am; 2018 Mar; 143(3):1591. PubMed ID: 29604673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-speaker and inter-speaker variability in speech sound pressure level across repeated readings.
    Castellana A; Carullo A; Astolfi A; Puglisi GE; Fugiglando U
    J Acoust Soc Am; 2017 Apr; 141(4):2353. PubMed ID: 28464626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Measurement of Airflow Using Singing Helmet That Allows Free Movement of the Jaw.
    Jiang JJ; Hanna RB; Willey MV; Rieves A
    J Voice; 2016 Nov; 30(6):641-648. PubMed ID: 26365311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximal Ambient Noise Levels and Type of Voice Material Required for Valid Use of Smartphones in Clinical Voice Research.
    Lebacq J; Schoentgen J; Cantarella G; Bruss FT; Manfredi C; DeJonckere P
    J Voice; 2017 Sep; 31(5):550-556. PubMed ID: 28320627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mobile Communication Devices, Ambient Noise, and Acoustic Voice Measures.
    Maryn Y; Ysenbaert F; Zarowski A; Vanspauwen R
    J Voice; 2017 Mar; 31(2):248.e11-248.e23. PubMed ID: 27692682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smartphones Offer New Opportunities in Clinical Voice Research.
    Manfredi C; Lebacq J; Cantarella G; Schoentgen J; Orlandi S; Bandini A; DeJonckere PH
    J Voice; 2017 Jan; 31(1):111.e1-111.e7. PubMed ID: 27068549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-device reliability of DSI measurement.
    Aichinger P; Feichter F; Aichstill B; Bigenzahn W; Schneider-Stickler B
    Logoped Phoniatr Vocol; 2012 Dec; 37(4):167-73. PubMed ID: 22702894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility of Dual-Microphone Voice Range Profile Equipment.
    Printz T; Pedersen ER; Juhl P; Nielsen T; Grøntved ÅM; Godballe C
    J Speech Lang Hear Res; 2017 Dec; 60(12):3369-3377. PubMed ID: 29121160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft-talker: a sound level monitor for the hard-of-hearing using an improved tactile transducer.
    Walker JR; Fenn G; Smith BZ
    J Biomed Eng; 1987 Apr; 9(2):177-9. PubMed ID: 3573759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech level parameters in very low and excessive reverberation measured with a contact-sensor-based device and a headworn microphone.
    Astolfi A; Castellana A; Puglisi GE; Fugiglando U; Carullo A
    J Acoust Soc Am; 2019 Apr; 145(4):2540. PubMed ID: 31046351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particle velocity estimation based on a two-microphone array and Kalman filter.
    Bai MR; Juan SW; Chen CC
    J Acoust Soc Am; 2013 Mar; 133(3):1425-32. PubMed ID: 23464014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of the signal produced by a directional sound source from remote multi-microphone recordings.
    Guarato F; Hallam J; Matsuo I
    J Acoust Soc Am; 2011 Sep; 130(3):1689-99. PubMed ID: 21895106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoring speech following total removal of the larynx by a learned transformation from sensor data to acoustics.
    Gilbert JM; Gonzalez JA; Cheah LA; Ell SR; Green P; Moore RK; Holdsworth E
    J Acoust Soc Am; 2017 Mar; 141(3):EL307. PubMed ID: 28372104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of voice source characteristics using a constrained polynomial representation of voice source signals.
    Kaburagi T; Kawai K; Abe S
    J Acoust Soc Am; 2007 Feb; 121(2):745-8. PubMed ID: 17348497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Aerodynamic Study of Phonations in Patients With Parkinson Disease (PD).
    Ikui Y; Nakamura H; Sano D; Hyakusoku H; Kishida H; Kudo Y; Joki H; Koyano S; Yamauchi A; Takano S; Tayama N; Hirose H; Oridate N; Tanaka F
    J Voice; 2015 May; 29(3):273-80. PubMed ID: 25795370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voice quality monitoring: a portable device prototype.
    Manfredi C; Bruschi T; Dallai A; Ferri A; Tortoli P; Calisti M
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():997-1000. PubMed ID: 19162826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.