These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 29960481)
1. Slitted leading edge profiles for the reduction of turbulence-aerofoil interaction noise. Chaitanya P; Joseph P J Acoust Soc Am; 2018 Jun; 143(6):3494. PubMed ID: 29960481 [TBL] [Abstract][Full Text] [Related]
2. Effect of trailing-edge serrations on noise reduction in a coupled bionic aerofoil inspired by barn owls. Li D; Liu X; Hu F; Wang L Bioinspir Biomim; 2019 Dec; 15(1):016009. PubMed ID: 31665715 [TBL] [Abstract][Full Text] [Related]
3. On the manipulation of flow and acoustic fields of a blunt trailing edge aerofoil by serrated leading edges. Hasheminejad SM; Chong TP; Lacagnina G; Joseph P; Kim JH; Choi KS; Omidyeganeh M; Pinelli A; Stalnov O J Acoust Soc Am; 2020 Jun; 147(6):3932. PubMed ID: 32611165 [TBL] [Abstract][Full Text] [Related]
4. Numerical Analysis of Broadband Noise Generated by an Airfoil with Spanwise-Varying Leading Edges. Wang L; Liu X; Tian C; Li D Biomimetics (Basel); 2024 Apr; 9(4):. PubMed ID: 38667240 [TBL] [Abstract][Full Text] [Related]
5. Aeroacoustic characteristics of owl-inspired blade designs in a mixed flow fan: effects of leading- and trailing-edge serrations. Wang J; Ishibashi K; Joto M; Ikeda T; Fujii T; Nakata T; Liu H Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34243175 [TBL] [Abstract][Full Text] [Related]
6. Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction. Chong TP; Dubois E J Acoust Soc Am; 2016 Aug; 140(2):1361. PubMed ID: 27586762 [TBL] [Abstract][Full Text] [Related]
7. Effects of Reynolds Number and Distribution on Passive Flow Control in Owl-Inspired Leading-Edge Serrations. Rao C; Liu H Integr Comp Biol; 2020 Nov; 60(5):1135-1146. PubMed ID: 32805051 [TBL] [Abstract][Full Text] [Related]
8. Effect of streamwise vane treatments on the noise reduction performance of trailing edge serrations under aerodynamic loading conditions. Sundeep S; Zhou P; Zhong S J Acoust Soc Am; 2023 Dec; 154(6):3684-3695. PubMed ID: 38059726 [TBL] [Abstract][Full Text] [Related]
9. Interaction of barn owl leading edge serrations with freestream turbulence. Midmer A; Brücker C; Weger M; Wagner H; Bleckmann H Bioinspir Biomim; 2024 Apr; 19(3):. PubMed ID: 38569525 [TBL] [Abstract][Full Text] [Related]
10. Bioinspired aerofoil adaptations: the next steps for theoretical models. Ayton LJ Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2159):20190070. PubMed ID: 31607251 [TBL] [Abstract][Full Text] [Related]
11. The three-dimensional shape of serrations at barn owl wings: towards a typical natural serration as a role model for biomimetic applications. Bachmann T; Wagner H J Anat; 2011 Aug; 219(2):192-202. PubMed ID: 21507001 [TBL] [Abstract][Full Text] [Related]
12. The effect of leading edge porosity on airfoil turbulence interaction noise. Bowen L; Celik A; Zhou B; Westin MF; Azarpeyvand M J Acoust Soc Am; 2022 Sep; 152(3):1437. PubMed ID: 36182309 [TBL] [Abstract][Full Text] [Related]
13. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression. Rao C; Ikeda T; Nakata T; Liu H Bioinspir Biomim; 2017 Jul; 12(4):046008. PubMed ID: 28675148 [TBL] [Abstract][Full Text] [Related]
14. Inflow turbulence distortion for airfoil leading-edge noise prediction for large turbulence length scales for zero-mean loading. Dos Santos FL; Botero-Bolívar L; Venner CH; de Santana LD J Acoust Soc Am; 2023 Mar; 153(3):1811. PubMed ID: 37002080 [TBL] [Abstract][Full Text] [Related]
15. Hydroacoustic and hydrodynamic investigation of bio-inspired leading-edge tubercles on marine-ducted thrusters. Stark C; Shi W R Soc Open Sci; 2021 Sep; 8(9):210402. PubMed ID: 34527272 [TBL] [Abstract][Full Text] [Related]
16. Morphological Variations of Leading-Edge Serrations in Owls (Strigiformes). Weger M; Wagner H PLoS One; 2016; 11(3):e0149236. PubMed ID: 26934104 [TBL] [Abstract][Full Text] [Related]
17. Flow-noise and turbulence in two tidal channels. Bassett C; Thomson J; Dahl PH; Polagye B J Acoust Soc Am; 2014 Apr; 135(4):1764-74. PubMed ID: 25234976 [TBL] [Abstract][Full Text] [Related]
18. Potential flow through a cascade of aerofoils: direct and inverse problems. Baddoo PJ; Ayton LJ Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180065. PubMed ID: 30333697 [TBL] [Abstract][Full Text] [Related]
19. The steady aerodynamics of aerofoils with porosity gradients. Hajian R; Jaworski JW Proc Math Phys Eng Sci; 2017 Sep; 473(2205):20170266. PubMed ID: 28989307 [TBL] [Abstract][Full Text] [Related]
20. A slit method to determine the focal spot size and shape of TomoTherapy system. Chen Q; Chen Y; Chen M; Chao E; Sterpin E; Lu W Med Phys; 2011 Jun; 38(6):2841-9. PubMed ID: 21815359 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]