These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29960514)

  • 1. A multi-channel high-speed magnetic field detection system based on FPGA for transcranial magnetic stimulation.
    Xiong H; Zheng C; Liu J
    Rev Sci Instrum; 2018 Jun; 89(6):065108. PubMed ID: 29960514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Design of Noninvasive Blood Constituent Spectrum Data Acquisition System Based on FPGA].
    Guo J; Lu QP; Gao HZ; Ding HQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Sep; 36(9):2991-6. PubMed ID: 30085492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FPGA-Based Interface of Digital DAQ System for Double-Scattering Compton Camera.
    Kim SM; Kim YS
    Nucl Med Mol Imaging; 2018 Dec; 52(6):430-437. PubMed ID: 30538774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of transcranial magnetic stimulation on four types of pressure-programmable valves.
    Lefranc M; Ko JY; Peltier J; Fichten A; Desenclos C; Macron JM; Toussaint P; Le Gars D; Petitjean M
    Acta Neurochir (Wien); 2010 Apr; 152(4):689-97. PubMed ID: 19957091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 2-in-1 single-element coil design for transcranial magnetic stimulation and magnetic resonance imaging.
    Lu H; Wang S
    Magn Reson Med; 2018 Jan; 79(1):582-587. PubMed ID: 28185321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcranial Magnetic Stimulation: An Automated Procedure to Obtain Coil-specific Models for Field Calculations.
    Madsen KH; Ewald L; Siebner HR; Thielscher A
    Brain Stimul; 2015; 8(6):1205-8. PubMed ID: 26297386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Survey on Improved Focality and Penetration Depth of Transcranial Magnetic Stimulation Employing Multi-Coil Arrays.
    Wei X; Li Y; Lu M; Wang J; Yi G
    Int J Environ Res Public Health; 2017 Nov; 14(11):. PubMed ID: 29135963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A field-programmable gate array (FPGA)-based data acquisition system for closed-loop experiments.
    Delgadillo Bonequi I; Stroschein A; Koerner LJ
    Rev Sci Instrum; 2022 Nov; 93(11):114712. PubMed ID: 36461500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MR-based measurements and simulations of the magnetic field created by a realistic transcranial magnetic stimulation (TMS) coil and stimulator.
    Mandija S; Petrov PI; Neggers SF; Luijten PR; van den Berg CA
    NMR Biomed; 2016 Nov; 29(11):1590-1600. PubMed ID: 27669678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An FPGA Platform for Next-Generation Grating Encoders.
    Han Y; Ni K; Li X; Wu G; Yu K; Zhou Q; Wang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Implementation of a Real-Time Multi-Beam Sonar System Based on FPGA and DSP.
    Tian H; Guo S; Zhao P; Gong M; Shen C
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A field programmable gate array based high speed real-time weak periodic signal detection technique.
    Hu J; Shen Z; Liu S; An Q
    Rev Sci Instrum; 2021 Feb; 92(2):024703. PubMed ID: 33648069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Design and implementation of the pulse wave generator with field programmable gate array based on windkessel model].
    Wang H; Fu Q; Xu L; Liu J; He D; Li Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Oct; 31(5):989-93. PubMed ID: 25764709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography.
    Khan S; Manwaring P; Borsic A; Halter R
    IEEE Trans Med Imaging; 2015 Apr; 34(4):888-901. PubMed ID: 25376037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CMOS Hall sensor modeling with readout circuitry and microcontroller processing for magnetic detection.
    Fan H; Zhang J; Zuo S; Hu Q; Feng Q; Heidari H
    Rev Sci Instrum; 2021 Mar; 92(3):034707. PubMed ID: 33819979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic multi-channel TMS with reconfigurable coil.
    Jiang R; Jansen BH; Sheth BR; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):370-5. PubMed ID: 23193321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. flexTMS--a novel repetitive transcranial magnetic stimulation device with freely programmable stimulus currents.
    Gattinger N; Moessnang G; Gleich B
    IEEE Trans Biomed Eng; 2012 Jul; 59(7):1962-70. PubMed ID: 22531742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcranial magnetic stimulation--a sandwich coil design for a better sham.
    Sommer J; Jansen A; Dräger B; Steinsträter O; Breitenstein C; Deppe M; Knecht S
    Clin Neurophysiol; 2006 Feb; 117(2):440-6. PubMed ID: 16376141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of a robotic system for transcranial magnetic stimulation.
    Zorn L; Renaud P; Bayle B; Goffin L; Lebossé C; de Mathelin M; Foucher J
    IEEE Trans Biomed Eng; 2012 Mar; 59(3):805-15. PubMed ID: 22186930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-orthogonal one-step calibration method for robotized transcranial magnetic stimulation.
    Wang H; Jin J; Wang X; Li Y; Liu Z; Yin T
    Biomed Eng Online; 2018 Oct; 17(1):137. PubMed ID: 30285787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.