These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 29960546)

  • 1. Note: Multi-sheet light enables optical interference lithography.
    Mohan K; Tyagi A; Mondal PP
    Rev Sci Instrum; 2018 Jun; 89(6):066106. PubMed ID: 29960546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-sheet based lithography technique for patterning an array of microfluidic channels.
    Mohan K; Mondal PP
    Microsc Res Tech; 2018 Sep; 81(9):936-940. PubMed ID: 28176422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient generation of diffraction-limited multi-sheet pattern for biological imaging.
    Mondal PP; Dilipkumar S; Mohan K
    Opt Lett; 2015 Feb; 40(4):609-12. PubMed ID: 25680162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3-dimensional electrode patterning within a microfluidic channel using metal ion implantation.
    Choi JW; Rosset S; Niklaus M; Adleman JR; Shea H; Psaltis D
    Lab Chip; 2010 Mar; 10(6):783-8. PubMed ID: 20221568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Method for single-shot fabrication of chiral woodpile photonic structures using phase-controlled interference lithography.
    Sarkar S; Samanta K; Joseph J
    Opt Express; 2020 Feb; 28(3):4347-4361. PubMed ID: 32122089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Note: Experimental observation of nano-channel pattern in light sheet laser interference nanolithography system.
    Mohan K; Mondal PP
    Rev Sci Instrum; 2016 Jun; 87(6):066107. PubMed ID: 27370508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-photon-multi-layer-interference lithography for high-aspect-ratio and three-dimensional SU-8 micro-/nanostructures.
    Ghosh S; Ananthasuresh GK
    Sci Rep; 2016 Jan; 6():18428. PubMed ID: 26725843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of helical photonic structures with submicrometer axial and spatial periodicities following "inverted umbrella" geometry through phase-controlled interference lithography.
    Behera S; Sarkar S; Joseph J
    Opt Lett; 2018 Jan; 43(1):106-109. PubMed ID: 29328206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Area High Aspect Ratio Plasmonic Interference Lithography Utilizing a Single High-k Mode.
    Chen X; Yang F; Zhang C; Zhou J; Guo LJ
    ACS Nano; 2016 Apr; 10(4):4039-45. PubMed ID: 27075440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An all-glass 12 μm ultra-thin and flexible micro-fluidic chip fabricated by femtosecond laser processing.
    Yalikun Y; Hosokawa Y; Iino T; Tanaka Y
    Lab Chip; 2016 Jul; 16(13):2427-33. PubMed ID: 27225521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-step optical realization of bio-inspired dual-periodic motheye and gradient-index-array photonic structures.
    Behera S; Joseph J
    Opt Lett; 2016 Aug; 41(15):3579-82. PubMed ID: 27472623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfabrication of cylindrical microfluidic channel networks for microvascular research.
    Huang Z; Li X; Martins-Green M; Liu Y
    Biomed Microdevices; 2012 Oct; 14(5):873-83. PubMed ID: 22729782
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Tapered Micropillars with High Aspect-Ratio Based on Deep X-ray Lithography.
    Park JM; Kim JH; Han JS; Shin DS; Park SC; Son SH; Park SJ
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography.
    Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB
    Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Throughput Synthesis of Liposome Using an Injection-Molded Plastic Micro-Fluidic Device.
    Woo SW; Jo YK; Yoo YE; Kim SK
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33572238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRT letter: Two-photon excitation-based 2pi light-sheet system for nano-lithography.
    Mohan K; Mondal PP
    Microsc Res Tech; 2015 Jan; 78(1):1-7. PubMed ID: 25431252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of sphere-surface distance and exposure dose on resolution of sphere-lens-array lithography.
    Liu X; Li X; Li L; Chen W; Luo X
    Opt Express; 2015 Nov; 23(23):30136-42. PubMed ID: 26698494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting.
    Yun DJ; Seo TI; Park DS
    Sensors (Basel); 2008 Feb; 8(2):1308-1320. PubMed ID: 27879767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of Micro-Optics Elements with Arbitrary Surface Profiles Based on One-Step Maskless Grayscale Lithography.
    Deng Q; Yang Y; Gao H; Zhou Y; He Y; Hu S
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct laser writing for micro-optical devices using a negative photoresist.
    Tsutsumi N; Hirota J; Kinashi K; Sakai W
    Opt Express; 2017 Dec; 25(25):31539-31551. PubMed ID: 29245828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.