These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 29960884)

  • 1. MHCflurry: Open-Source Class I MHC Binding Affinity Prediction.
    O'Donnell TJ; Rubinsteyn A; Bonsack M; Riemer AB; Laserson U; Hammerbacher J
    Cell Syst; 2018 Jul; 7(1):129-132.e4. PubMed ID: 29960884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput MHC I Ligand Prediction Using MHCflurry.
    O'Donnell T; Rubinsteyn A
    Methods Mol Biol; 2020; 2120():113-127. PubMed ID: 32124315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MHCflurry 2.0: Improved Pan-Allele Prediction of MHC Class I-Presented Peptides by Incorporating Antigen Processing.
    O'Donnell TJ; Rubinsteyn A; Laserson U
    Cell Syst; 2020 Jul; 11(1):42-48.e7. PubMed ID: 32711842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system.
    Paul S; Croft NP; Purcell AW; Tscharke DC; Sette A; Nielsen M; Peters B
    PLoS Comput Biol; 2020 May; 16(5):e1007757. PubMed ID: 32453790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods.
    Zhang H; Lundegaard C; Nielsen M
    Bioinformatics; 2009 Jan; 25(1):83-9. PubMed ID: 18996943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01.
    Pedersen LE; Rasmussen M; Harndahl M; Nielsen M; Buus S; Jungersen G
    Immunogenetics; 2016 Feb; 68(2):157-65. PubMed ID: 26572135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers.
    Lundegaard C; Lund O; Nielsen M
    Bioinformatics; 2008 Jun; 24(11):1397-8. PubMed ID: 18413329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions.
    Karosiene E; Lundegaard C; Lund O; Nielsen M
    Immunogenetics; 2012 Mar; 64(3):177-86. PubMed ID: 22009319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MHCSeqNet: a deep neural network model for universal MHC binding prediction.
    Phloyphisut P; Pornputtapong N; Sriswasdi S; Chuangsuwanich E
    BMC Bioinformatics; 2019 May; 20(1):270. PubMed ID: 31138107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC-Peptide Binding Data Set.
    Bonsack M; Hoppe S; Winter J; Tichy D; Zeller C; Küpper MD; Schitter EC; Blatnik R; Riemer AB
    Cancer Immunol Res; 2019 May; 7(5):719-736. PubMed ID: 30902818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A community resource benchmarking predictions of peptide binding to MHC-I molecules.
    Peters B; Bui HH; Frankild S; Nielson M; Lundegaard C; Kostem E; Basch D; Lamberth K; Harndahl M; Fleri W; Wilson SS; Sidney J; Lund O; Buus S; Sette A
    PLoS Comput Biol; 2006 Jun; 2(6):e65. PubMed ID: 16789818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of Uncertainty in Peptide-MHC Binding Prediction Improves High-Affinity Peptide Selection for Therapeutic Design.
    Zeng H; Gifford DK
    Cell Syst; 2019 Aug; 9(2):159-166.e3. PubMed ID: 31176619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets.
    Nielsen M; Andreatta M
    Genome Med; 2016 Mar; 8(1):33. PubMed ID: 27029192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PSSMHCpan: a novel PSSM-based software for predicting class I peptide-HLA binding affinity.
    Liu G; Li D; Li Z; Qiu S; Li W; Chao CC; Yang N; Li H; Cheng Z; Song X; Cheng L; Zhang X; Wang J; Yang H; Ma K; Hou Y; Li B
    Gigascience; 2017 May; 6(5):1-11. PubMed ID: 28327987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.
    Lundegaard C; Lamberth K; Harndahl M; Buus S; Lund O; Nielsen M
    Nucleic Acids Res; 2008 Jul; 36(Web Server issue):W509-12. PubMed ID: 18463140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated benchmarking of peptide-MHC class I binding predictions.
    Trolle T; Metushi IG; Greenbaum JA; Kim Y; Sidney J; Lund O; Sette A; Peters B; Nielsen M
    Bioinformatics; 2015 Jul; 31(13):2174-81. PubMed ID: 25717196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.