BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 29961352)

  • 1. Do bismuth complexes hold promise as antileishmanial drugs?
    Ong YC; Kedzierski L; Andrews PC
    Future Med Chem; 2018 Jul; 10(14):1721-1733. PubMed ID: 29961352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of residual Sb(III) in meglumine antimoniate cytotoxicity and MRP1-mediated resistance.
    Dzamitika SA; Falcão CA; de Oliveira FB; Marbeuf C; Garnier-Suillerot A; Demicheli C; Rossi-Bergmann B; Frézard F
    Chem Biol Interact; 2006 Apr; 160(3):217-24. PubMed ID: 16524568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and characterization of bismuth(III) and antimony(V) porphyrins: high antileishmanial activity against antimony-resistant parasite.
    Gomes ML; DeFreitas-Silva G; dos Reis PG; Melo MN; Frézard F; Demicheli C; Idemori YM
    J Biol Inorg Chem; 2015 Jul; 20(5):771-9. PubMed ID: 25929728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural influences on the activity of bismuth(III) indole-carboxylato complexes towards Helicobacter pylori and Leishmania.
    Pathak A; Blair VL; Ferrero RL; Kedzierski L; Andrews PC
    J Inorg Biochem; 2017 Dec; 177():266-275. PubMed ID: 28583712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscaled hydrated antimony (V) oxide as a new approach to first-line antileishmanial drugs.
    Franco AM; Grafova I; Soares FV; Gentile G; Wyrepkowski CD; Bolson MA; Sargentini É; Carfagna C; Leskelä M; Grafov A
    Int J Nanomedicine; 2016; 11():6771-6780. PubMed ID: 28008252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake and antileishmanial activity of meglumine antimoniate-containing liposomes in Leishmania (Leishmania) major-infected macrophages.
    Borborema SE; Schwendener RA; Osso JA; de Andrade HF; do Nascimento N
    Int J Antimicrob Agents; 2011 Oct; 38(4):341-7. PubMed ID: 21783345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative stability, toxicity and anti-leishmanial activity of triphenyl antimony(v) and bismuth(v) α-hydroxy carboxylato complexes.
    Duffin RN; Blair VL; Kedzierski L; Andrews PC
    Dalton Trans; 2018 Jan; 47(3):971-980. PubMed ID: 29260831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meglumine antımoniate-TiO2@Ag nanoparticle combinations reduce toxicity of the drug while enhancing its antileishmanial effect.
    Abamor ES; Allahverdiyev AM; Bagirova M; Rafailovich M
    Acta Trop; 2017 May; 169():30-42. PubMed ID: 28111133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved antileishmanial activity of Dppz through complexation with antimony(III) and bismuth(III): investigation of the role of the metal.
    Lizarazo-Jaimes EH; Monte-Neto RL; Reis PG; Fernandes NG; Speziali NL; Melo MN; Frézard F; Demicheli C
    Molecules; 2012 Oct; 17(11):12622-35. PubMed ID: 23099618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bismuth(III) β-thioxoketonates as antibiotics against Helicobacter pylori and as anti-leishmanial agents.
    Andrews PC; Blair VL; Ferrero RL; Junk PC; Kedzierski L; Peiris RM
    Dalton Trans; 2014 Jan; 43(3):1279-91. PubMed ID: 24190067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Canine leishmaniasis: evolution of the chemotherapeutic protocols].
    Oliva G; Foglia Manzillo V; Pagano A
    Parassitologia; 2004 Jun; 46(1-2):231-4. PubMed ID: 15305724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticancer compounds as leishmanicidal drugs: challenges in chemotherapy and future perspectives.
    Fuertes MA; Nguewa PA; Castilla J; Alonso C; Pérez JM
    Curr Med Chem; 2008; 15(5):433-9. PubMed ID: 18288998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability and toxicity of tris-tolyl bismuth(V) dicarboxylates and their biological activity towards Leishmania major.
    Ong YC; Blair VL; Kedzierski L; Tuck KL; Andrews PC
    Dalton Trans; 2015 Nov; 44(41):18215-26. PubMed ID: 26425978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Synthetic Approaches for Bisnaphthalimidopropyl (BNIP) Derivatives as Potential Anti-Parasitic Agents for the Treatment of Leishmaniasis.
    Keskin E; Ucisik MH; Sucu BO; Guzel M
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31888250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Marine Algae as Source of Novel Antileishmanial Drugs: A Review.
    Tchokouaha Yamthe LR; Appiah-Opong R; Tsouh Fokou PV; Tsabang N; Fekam Boyom F; Nyarko AK; Wilson MD
    Mar Drugs; 2017 Oct; 15(11):. PubMed ID: 29109372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry and Some Biological Potential of Bismuth and Antimony Dithiocarbamate Complexes.
    Adeyemi JO; Onwudiwe DC
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31940910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anti-Leishmanial activity of homo- and heteroleptic bismuth(III) carboxylates.
    Andrews PC; Frank R; Junk PC; Kedzierski L; Kumar I; MacLellan JG
    J Inorg Biochem; 2011 Mar; 105(3):454-61. PubMed ID: 20851471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manzamine alkaloids as antileishmanial agents: A review.
    Ashok P; Lathiya H; Murugesan S
    Eur J Med Chem; 2015 Jun; 97():928-36. PubMed ID: 25023608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promising therapeutic targets for antileishmanial drugs.
    Werbovetz KA
    Expert Opin Ther Targets; 2002 Aug; 6(4):407-22. PubMed ID: 12223057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limitations of Current Therapeutic Options, Possible Drug Targets and Scope of Natural Products in Control of Leishmaniasis.
    Tiwari N; Gedda MR; Tiwari VK; Singh SP; Singh RK
    Mini Rev Med Chem; 2018; 18(1):26-41. PubMed ID: 28443518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.