These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 2996174)

  • 1. Acrylamide neurotoxicity: altered spinal monosynaptic responses to quipazine, a serotonin agonist, in cats.
    Goldstein BD
    Toxicol Appl Pharmacol; 1985 May; 78(3):436-44. PubMed ID: 2996174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary afferent terminal function following acrylamide: alterations in the dorsal root potential and reflex.
    De Rojas TC; Goldstein BD
    Toxicol Appl Pharmacol; 1987 Apr; 88(2):175-82. PubMed ID: 3031847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paradoxical changes in spinal cord reflexes following the acute administration of acrylamide.
    Goldstein BD; Fincher DR
    Toxicol Lett; 1986 May; 31(2):93-9. PubMed ID: 3715927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Group Ia primary afferent terminal defect in cats with acrylamide neuropathy.
    Goldstein BD; Lowndes HE
    Neurotoxicology; 1981 Oct; 2(2):297-312. PubMed ID: 6119661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daily passive cycling attenuates the hyperexcitability and restores the responsiveness of the extensor monosynaptic reflex to quipazine in the chronic spinally transected rat.
    Chopek JW; MacDonell CW; Gardiner K; Gardiner PF
    J Neurotrauma; 2014 Jun; 31(12):1083-7. PubMed ID: 24484172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of supraspinal input reveals a difference in the flexor and extensor monosynaptic reflex response to quipazine independent of motoneuron excitation.
    Chopek JW; MacDonell CW; Power KE; Gardiner K; Gardiner PF
    J Neurophysiol; 2013 Apr; 109(8):2056-63. PubMed ID: 23365181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuations of excitability in the monosynaptic reflex pathway to lumbar motoneurons in the cat.
    Gossard JP; Floeter MK; Kawai Y; Burke RE; Chang T; Schiff SJ
    J Neurophysiol; 1994 Sep; 72(3):1227-39. PubMed ID: 7807207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in spinal cord reflexes following subchronic exposure to soman and sarin.
    Goldstein BD
    Toxicol Lett; 1989 Apr; 47(1):1-8. PubMed ID: 2711412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acrylamide preferentially affects slowly adapting cutaneous mechanoreceptors.
    Goldstein BD
    Toxicol Appl Pharmacol; 1985 Sep; 80(3):527-33. PubMed ID: 4035701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antagonism of 5-hydroxytryptamine receptors by quipazine.
    Lansdown MJ; Nash HL; Preston PR; Wallis DI; Williams RG
    Br J Pharmacol; 1980 Mar; 68(3):525-32. PubMed ID: 7052342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amphetamine stereotypy in cats and neurotransmitter interactions in the caudate nucleus. III. Effects of intracaudate injections of quipazine, cyproheptadine and electrical stimulation of the raphe dorsal nucleus.
    Moyanova SG; Rousseva SP
    Acta Physiol Pharmacol Bulg; 1989; 15(3):43-9. PubMed ID: 2574932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of NH4+ on reflexes in cat spinal cord.
    Raabe W
    J Neurophysiol; 1990 Aug; 64(2):565-74. PubMed ID: 2213133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of N-methyl-D-aspartate receptors for the Ptychodiscus brevis toxin-induced depression of monosynaptic and polysynaptic reflexes in neonatal rat spinal cord in vitro.
    Singh JN; Deshpande SB
    Neuroscience; 2002; 115(4):1189-97. PubMed ID: 12453490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monosynaptic and dorsal root reflexes during locomotion in normal and thalamic cats.
    Duenas SH; Loeb GE; Marks WB
    J Neurophysiol; 1990 Jun; 63(6):1467-76. PubMed ID: 2358886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raphe unit activity in freely moving cats: effects of quipazine.
    Trulson ME; Crisp T; Howell GA
    Neuropharmacology; 1982 Jul; 21(7):681-6. PubMed ID: 7121739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of serotonergic drugs on the locomotor pattern and on cutaneous reflexes of the adult chronic spinal cat.
    Barbeau H; Rossignol S
    Brain Res; 1990 Apr; 514(1):55-67. PubMed ID: 2357531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antagonistic properties of quipazine at presynaptic serotonin receptors and alpha-adrenoceptors in rat brain cortex slices.
    Schlicker E; Göthert M
    Naunyn Schmiedebergs Arch Pharmacol; 1981 Nov; 317(3):204-8. PubMed ID: 6275275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modifications of acoustic habituation by interruption of visual input in quipazine treated cats.
    Cervantes M; Guzmán-Flores C
    Bol Estud Med Biol; 1989; 37(1-2):28-35. PubMed ID: 2803471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical and morphologic characterization of acrylamide peripheral neuropathy.
    Lehning EJ; Persaud A; Dyer KR; Jortner BS; LoPachin RM
    Toxicol Appl Pharmacol; 1998 Aug; 151(2):211-21. PubMed ID: 9707497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Comparative anorexigenic activity and other pharmacological properties of quipazine and its N-acyl derivatives].
    Trubitsyna TK; Asnina VV; Mashkovskiĭ MD
    Farmakol Toksikol; 1986; 49(1):44-9. PubMed ID: 3948987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.