BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 29961891)

  • 1. Gene circuit engineering to improve the performance of a whole-cell lead biosensor.
    Jia X; Zhao T; Liu Y; Bu R; Wu K
    FEMS Microbiol Lett; 2018 Aug; 365(16):. PubMed ID: 29961891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of a sensitive and specific lead biosensor using a genetically engineered bacterial system with a luciferase gene reporter controlled by pbr and cadA promoters.
    Nourmohammadi E; Hosseinkhani S; Nedaeinia R; Khoshdel-Sarkarizi H; Nedaeinia M; Ranjbar M; Ebrahimi N; Farjami Z; Nourmohammadi M; Mahmoudi A; Goli M; Ferns GA; Sadeghizadeh M
    Biomed Eng Online; 2020 Oct; 19(1):79. PubMed ID: 33076919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple whole-cell biodetection and bioremediation of heavy metals based on an engineered lead-specific operon.
    Wei W; Liu X; Sun P; Wang X; Zhu H; Hong M; Mao ZW; Zhao J
    Environ Sci Technol; 2014 Mar; 48(6):3363-71. PubMed ID: 24564581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cysteine coordination of Pb(II) is involved in the PbrR-dependent activation of the lead-resistance promoter, PpbrA, from Cupriavidus metallidurans CH34.
    Hobman JL; Julian DJ; Brown NL
    BMC Microbiol; 2012 Jun; 12():109. PubMed ID: 22708803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitive and Specific Whole-Cell Biosensor for Arsenic Detection.
    Jia X; Bu R; Zhao T; Wu K
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30952659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions.
    Taghavi S; Lesaulnier C; Monchy S; Wattiez R; Mergeay M; van der Lelie D
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):171-82. PubMed ID: 18953667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feedback regulation mode of gene circuits directly affects the detection range and sensitivity of lead and mercury microbial biosensors.
    Du R; Guo M; He X; Huang K; Luo Y; Xu W
    Anal Chim Acta; 2019 Nov; 1084():85-92. PubMed ID: 31519238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Aspirin-Inducible Biosensors in
    Chen JX; Steel H; Wu YH; Wang Y; Xu J; Rampley CPN; Thompson IP; Papachristodoulou A; Huang WE
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30658983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment.
    de Las Heras A; de Lorenzo V
    Methods Mol Biol; 2012; 834():261-81. PubMed ID: 22144365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Whole-Cell Bacterial Biosensor for Blood Markers Detection in Urine.
    Barger N; Oren I; Li X; Habib M; Daniel R
    ACS Synth Biol; 2021 May; 10(5):1132-1142. PubMed ID: 33908255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modularization and Response Curve Engineering of a Naringenin-Responsive Transcriptional Biosensor.
    De Paepe B; Maertens J; Vanholme B; De Mey M
    ACS Synth Biol; 2018 May; 7(5):1303-1314. PubMed ID: 29688705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Application of a Synthetically-Derived Lead Biosensor Construct for Use in Gram-Negative Bacteria.
    Bereza-Malcolm L; Aracic S; Franks AE
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional activation of MerR family promoters in Cupriavidus metallidurans CH34.
    Julian DJ; Kershaw CJ; Brown NL; Hobman JL
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):149-59. PubMed ID: 19005773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing the copper-sensing capability of Escherichia coli-based whole-cell bioreporters by genetic engineering.
    Kang Y; Lee W; Kim S; Jang G; Kim BG; Yoon Y
    Appl Microbiol Biotechnol; 2018 Feb; 102(3):1513-1521. PubMed ID: 29243083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
    Chen XF; Xia XX; Lee SY; Qian ZG
    Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineered cells in mice.
    Hui C; Guo Y; Zhang W; Gao C; Yang X; Chen Y; Li L; Huang X
    Sci Rep; 2018 Apr; 8(1):5685. PubMed ID: 29632327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bioluminescent arsenite biosensor designed for inline water analyzer.
    Prévéral S; Brutesco C; Descamps ECT; Escoffier C; Pignol D; Ginet N; Garcia D
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):25-32. PubMed ID: 26769474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34.
    Borremans B; Hobman JL; Provoost A; Brown NL; van Der Lelie D
    J Bacteriol; 2001 Oct; 183(19):5651-8. PubMed ID: 11544228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational Design and Characterization of Nitric Oxide Biosensors in
    Chen XJ; Wang B; Thompson IP; Huang WE
    ACS Synth Biol; 2021 Oct; 10(10):2566-2578. PubMed ID: 34551261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Highly Sensitive Whole-Cell Biosensor for Arsenite Detection through Engineered Promoter Modifications.
    Chen SY; Wei W; Yin BC; Tong Y; Lu J; Ye BC
    ACS Synth Biol; 2019 Oct; 8(10):2295-2302. PubMed ID: 31525958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.