These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 29962144)

  • 61. Ultrahigh Peroxymonosulfate Utilization Efficiency over CuO Nanosheets via Heterogeneous Cu(III) Formation and Preferential Electron Transfer during Degradation of Phenols.
    Wei Y; Miao J; Ge J; Lang J; Yu C; Zhang L; Alvarez PJJ; Long M
    Environ Sci Technol; 2022 Jun; 56(12):8984-8992. PubMed ID: 35638588
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Electrochemically activated peroxymonosulfate for the abatement of chloramphenicol in water: performance and mechanism.
    Gao YQ; Zhou JQ; Ning H; Rao YY; Gao NY
    Environ Sci Pollut Res Int; 2022 Mar; 29(12):17866-17877. PubMed ID: 34674129
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Catalytic potential of CuFe
    Noroozi R; Gholami M; Farzadkia M; Jonidi Jafari A
    J Environ Health Sci Eng; 2020 Dec; 18(2):947-960. PubMed ID: 33312615
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhanced sono-photocatalysis of tetracycline antibiotic using TiO
    Kakavandi B; Bahari N; Rezaei Kalantary R; Dehghani Fard E
    Ultrason Sonochem; 2019 Jul; 55():75-85. PubMed ID: 31084793
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Activation of peroxymonosulfate by calcined electroplating sludge for ofloxacin degradation.
    Peng G; Qi C; Wang X; Zhou L; He Q; Zhou W; Chen L
    Chemosphere; 2021 Mar; 266():128944. PubMed ID: 33257045
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Performance of Cu-cathode/Fe
    Lv XD; Yang SQ; Xue WJ; Cui YH; Liu ZQ
    J Hazard Mater; 2019 Mar; 366():250-258. PubMed ID: 30530016
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Photo-assisted catalytic degradation of acetaminophen using peroxymonosulfate decomposed by magnetic carbon heterojunction catalyst.
    Noorisepehr M; Ghadirinejad K; Kakavandi B; Ramazanpour Esfahani A; Asadi A
    Chemosphere; 2019 Oct; 232():140-151. PubMed ID: 31152898
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Enhanced degradation of DDT using a novel iron-assisted hydrochar catalyst combined with peroxymonosulfate: Experiment and mechanism analysis.
    Dang M; Chen D; Lu P; Xu G
    Chemosphere; 2022 Nov; 307(Pt 4):135893. PubMed ID: 35964714
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In-situ preparation of yeast-supported Fe
    Li B; Li CX; Wang Y; Xu W; Cui K; Zhan X; Deng R; Zhang X
    Chemosphere; 2023 May; 324():138340. PubMed ID: 36893868
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Surface-bound radical control rapid organic contaminant degradation through peroxymonosulfate activation by reduced Fe-bearing smectite clays.
    Chen N; Fang G; Zhu C; Wu S; Liu G; Dionysiou DD; Wang X; Gao J; Zhou D
    J Hazard Mater; 2020 May; 389():121819. PubMed ID: 31848100
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Degradation of RBK5 by High Crystallinity Mn-Fe LDH Catalyst Activating Peroxymonosulfate].
    Li L; Wu LY; Dong ZY; Wang J; Zhang Q; Hong JM
    Huan Jing Ke Xue; 2020 Jun; 41(6):2736-2745. PubMed ID: 32608789
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enhanced Heterogeneous Peroxymonosulfate Activation by MOF-Derived Magnetic Carbonaceous Nanocomposite for Phenol Degradation.
    Li X; Zhu X; Wu J; Gao H; Yang W; Hu X
    Materials (Basel); 2023 Apr; 16(9):. PubMed ID: 37176207
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Contribution of
    Zhu Q; Chen L; Zhu T; Gao Z; Wang C; Geng R; Bai W; Cao Y; Zhu J
    Environ Pollut; 2024 Feb; 342():123064. PubMed ID: 38042475
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Activation of peroxymonosulfate by BiOCl@Fe
    Wu Y; Fang Z; Shi Y; Chen H; Liu Y; Wang Y; Dong W
    Chemosphere; 2019 Feb; 216():248-257. PubMed ID: 30384293
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Activation of peroxymonosulfate system by copper-based catalyst for degradation of naproxen: Mechanisms and pathways.
    Chi H; Wang Z; He X; Zhang J; Wang D; Ma J
    Chemosphere; 2019 Aug; 228():54-64. PubMed ID: 31022620
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Core-shell Prussian blue analogues@ poly(m-phenylenediamine) as efficient peroxymonosulfate activators for degradation of Rhodamine B with reduced metal leaching.
    Zeng L; Xiao L; Shi X; Wei M; Cao J; Long Y
    J Colloid Interface Sci; 2019 Jan; 534():586-594. PubMed ID: 30265986
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multi-chamber membrane capacitive deionization coupled with peroxymonosulfate to achieve simultaneous removal of tetracycline and peroxymonosulfate reaction byproducts.
    Yu M; Yang C; Chen M; Li Y; Kang K; Wang C; Niu J; Mu S; Zhang J; Liu C; Ma J
    J Hazard Mater; 2024 Jun; 476():135036. PubMed ID: 38936188
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Why the cooperation of radical and non-radical pathways in PMS system leads to a higher efficiency than a single pathway in tetracycline degradation.
    Xiao ZJ; Feng XC; Shi HT; Zhou BQ; Wang WQ; Ren NQ
    J Hazard Mater; 2022 Feb; 424(Pt A):127247. PubMed ID: 34879542
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Heterogeneous activation of peroxymonosulfate by LaCo
    Lu S; Wang G; Chen S; Yu H; Ye F; Quan X
    J Hazard Mater; 2018 Jul; 353():401-409. PubMed ID: 29702455
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Highly efficient degradation of tetracycline in groundwater by nanoscale zero-valent iron-copper bimetallic biochar: active [H] attack and direct electron transfer mechanism.
    Zhang L; Wang Y; Xu Y
    Environ Sci Pollut Res Int; 2024 Jul; 31(31):43941-43955. PubMed ID: 38913261
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.