BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29962468)

  • 1. [Design of New Cancer Nanotherapeutics Which Controls Active Gaseous Molecules in Vivo].
    Nagasaki Y
    Yakugaku Zasshi; 2018; 138(7):911-918. PubMed ID: 29962468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries.
    Yoshitomi T; Nagasaki Y
    Adv Healthc Mater; 2014 Aug; 3(8):1149-61. PubMed ID: 24482427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Assembling Antioxidants for Ischemia-Reperfusion Injuries.
    Yoshitomi T; Nagasaki Y
    Antioxid Redox Signal; 2022 Jan; 36(1-3):70-80. PubMed ID: 34074133
    [No Abstract]   [Full Text] [Related]  

  • 4. The ROS scavenging and renal protective effects of pH-responsive nitroxide radical-containing nanoparticles.
    Yoshitomi T; Hirayama A; Nagasaki Y
    Biomaterials; 2011 Nov; 32(31):8021-8. PubMed ID: 21816462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combination Treatment of Murine Colon Cancer with Doxorubicin and Redox Nanoparticles.
    Vong LB; Nagasaki Y
    Mol Pharm; 2016 Feb; 13(2):449-55. PubMed ID: 26605906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the Toxicity and Antioxidant Activity of Redox Nanoparticles in Zebrafish (Danio rerio) Embryos.
    Vong LB; Kobayashi M; Nagasaki Y
    Mol Pharm; 2016 Sep; 13(9):3091-7. PubMed ID: 27186993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a new self-assembling antioxidant nanomedicine to ameliorate oxidative stress in zebrafish embryos.
    Shashni B; Tamaoki J; Kobayashi M; Nagasaki Y
    Acta Biomater; 2023 Mar; 159():367-381. PubMed ID: 36640953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitroxide radical-containing nanoparticles attenuate tumorigenic potential of triple negative breast cancer.
    Shashni B; Nagasaki Y
    Biomaterials; 2018 Sep; 178():48-62. PubMed ID: 29908344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox nanoparticle therapeutics to cancer--increase in therapeutic effect of doxorubicin, suppressing its adverse effect.
    Yoshitomi T; Ozaki Y; Thangavel S; Nagasaki Y
    J Control Release; 2013 Nov; 172(1):137-143. PubMed ID: 23958903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitroxide radicals and nanoparticles: a partnership for nanomedicine radical delivery.
    Nagasaki Y
    Ther Deliv; 2012 Feb; 3(2):165-79. PubMed ID: 22834195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice.
    Feliciano CP; Tsuboi K; Suzuki K; Kimura H; Nagasaki Y
    Biomaterials; 2017 Jun; 129():68-82. PubMed ID: 28324866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of Cognitive Dysfunction via Orally Administered Redox-Polymer Nanotherapeutics in SAMP8 Mice.
    Chonpathompikunlert P; Yoshitomi T; Vong LB; Imaizumi N; Ozaki Y; Nagasaki Y
    PLoS One; 2015; 10(5):e0126013. PubMed ID: 25955022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox nanoparticles inhibit curcumin oxidative degradation and enhance its therapeutic effect on prostate cancer.
    Thangavel S; Yoshitomi T; Sakharkar MK; Nagasaki Y
    J Control Release; 2015 Jul; 209():110-9. PubMed ID: 25912409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidative Nanoparticles Significantly Enhance Therapeutic Efficacy of an Antibacterial Therapy against Listeria monocytogenes Infection.
    Ikeda Y; Shoji K; Feliciano CP; Saito S; Nagasaki Y
    Mol Pharm; 2018 Mar; 15(3):1126-1132. PubMed ID: 29455535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
    Mailloux RJ; McBride SL; Harper ME
    Trends Biochem Sci; 2013 Dec; 38(12):592-602. PubMed ID: 24120033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorafenib-loaded silica-containing redox nanoparticles for oral anti-liver fibrosis therapy.
    Tran HT; Vong LB; Nishikawa Y; Nagasaki Y
    J Control Release; 2022 May; 345():880-891. PubMed ID: 35395328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer.
    Vong LB; Yoshitomi T; Matsui H; Nagasaki Y
    Biomaterials; 2015 Jul; 55():54-63. PubMed ID: 25934452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevention of UV-Induced Melanin Production by Accumulation of Redox Nanoparticles in the Epidermal Layer via Iontophoresis.
    Shiota K; Hama S; Yoshitomi T; Nagasaki Y; Kogure K
    Biol Pharm Bull; 2017; 40(6):941-944. PubMed ID: 28566638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox nanoparticles as a novel treatment approach for inflammation and fibrosis associated with nonalcoholic steatohepatitis.
    Eguchi A; Yoshitomi T; Lazic M; Johnson CD; Vong LB; Wree A; Povero D; Papouchado BG; Nagasaki Y; Feldstein AE
    Nanomedicine (Lond); 2015; 10(17):2697-708. PubMed ID: 26020857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.