These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 29963359)
1. Development of transgenic broccoli with Kumar P; Gambhir G; Gaur A; Sharma KC; Thakur AK; Srivastava DK 3 Biotech; 2018 Jul; 8(7):299. PubMed ID: 29963359 [TBL] [Abstract][Full Text] [Related]
2. Expression of cry1Aa gene in cabbage imparts resistance against diamondback moth (Plutella xylostella). Gambhir G; Kumar P; Aggarwal G; Srivastava DK; Thakur AK Biol Futur; 2020 Jun; 71(1-2):165-173. PubMed ID: 34554534 [TBL] [Abstract][Full Text] [Related]
3. Optimization of in vitro regeneration and Agrobacterium tumefaciens-mediated transformation with heat-resistant cDNA in Brassica oleracea subsp. italica cv. Green Marvel. Ravanfar SA; Aziz MA; Saud HM; Abdullah JO Curr Genet; 2015 Nov; 61(4):653-63. PubMed ID: 25986972 [TBL] [Abstract][Full Text] [Related]
4. High frequency organogenesis in hypocotyl, cotyledon, leaf and petiole explants of broccoli (Brassica oleracea L. var. italica), an important vegetable crop. Kumar P; Srivastava DK Physiol Mol Biol Plants; 2015 Apr; 21(2):279-85. PubMed ID: 25964720 [TBL] [Abstract][Full Text] [Related]
5. Agrobacterium-mediated transformation of cauliflower: optimization of protocol and development of Bt-transgenic cauliflower. Chakrabarty R; Viswakarma N; Bhat SR; Kirti PB; Singh BD; Chopra VL J Biosci; 2002 Sep; 27(5):495-502. PubMed ID: 12381873 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Trap Cropping for Control of Diamondback Moth (Lepidoptera: Plutellidae) in a Broccoli Production System. Sherbrooke S; Carrière Y; Palumbo JC J Econ Entomol; 2020 Aug; 113(4):1864-1871. PubMed ID: 32322879 [TBL] [Abstract][Full Text] [Related]
7. Impact of Diamondback Moth Density and Infestation Timing on Broccoli Yield. Farias ES; Sant'ana LCDS; Melo JB; Santana PA; Picanço MC Neotrop Entomol; 2021 Apr; 50(2):298-302. PubMed ID: 33683558 [TBL] [Abstract][Full Text] [Related]
8. Control of Lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene. Cho HS; Cao J; Ren JP; Earle ED Plant Cell Rep; 2001 Jan; 20(1):1-7. PubMed ID: 30759906 [TBL] [Abstract][Full Text] [Related]
9. Agrobacterium-mediated transformation of Brassica campestris ssp. Parachinensis with synthetic Bacillus thuringiensis cry1Ab and cry1Ac genes. Xiang Y; Wong WR; Ma MC; Wong RSC Plant Cell Rep; 2000 Jan; 19(3):251-256. PubMed ID: 30754903 [TBL] [Abstract][Full Text] [Related]
10. Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage (B. oleracea var. capitata). Metz TD; Dixit R; Earle ED Plant Cell Rep; 1995 Dec; 15(3-4):287-92. PubMed ID: 24185794 [TBL] [Abstract][Full Text] [Related]
11. Influences of Cry1Ac broccoli on larval survival and oviposition of diamondback moth. Yi D; Cui S; Yang L; Fang Z; Liu Y; Zhuang M; Zhang Y J Insect Sci; 2015; 15(1):. PubMed ID: 25843583 [TBL] [Abstract][Full Text] [Related]
12. Factors that influence Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica). Henzi MX; Christey MC; McNeil DL Plant Cell Rep; 2000 Oct; 19(10):994-999. PubMed ID: 30754845 [TBL] [Abstract][Full Text] [Related]
13. Germline transformation of the diamondback moth, Plutella xylostella L., using the piggyBac transposable element. Martins S; Naish N; Walker AS; Morrison NI; Scaife S; Fu G; Dafa'alla T; Alphey L Insect Mol Biol; 2012 Aug; 21(4):414-21. PubMed ID: 22621377 [TBL] [Abstract][Full Text] [Related]
14. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene. Zhang J; Liu F; Yao L; Luo C; Yin Y; Wang G; Huang Y Breed Sci; 2012 Jun; 62(2):105-12. PubMed ID: 23136521 [TBL] [Abstract][Full Text] [Related]
15. Down-regulation of a novel ABC transporter gene (Pxwhite) is associated with Cry1Ac resistance in the diamondback moth, Plutella xylostella (L.). Guo Z; Kang S; Zhu X; Xia J; Wu Q; Wang S; Xie W; Zhang Y Insect Biochem Mol Biol; 2015 Apr; 59():30-40. PubMed ID: 25636859 [TBL] [Abstract][Full Text] [Related]
16. A dynamic binomial sequential sampling plan for Plutella xylostella (Lepidoptera: Plutellidae) on broccoli and cauliflower in Australia. Hamilton AJ; Schellhorn NA; Endersby NM; Ridland PM; Ward SA J Econ Entomol; 2004 Feb; 97(1):127-35. PubMed ID: 14998136 [TBL] [Abstract][Full Text] [Related]
17. Geographic spread, genetics and functional characteristics of ryanodine receptor based target-site resistance to diamide insecticides in diamondback moth, Plutella xylostella. Steinbach D; Gutbrod O; Lümmen P; Matthiesen S; Schorn C; Nauen R Insect Biochem Mol Biol; 2015 Aug; 63():14-22. PubMed ID: 25976541 [TBL] [Abstract][Full Text] [Related]
18. Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Wang J; Chen Z; Du J; Sun Y; Liang A Plant Cell Rep; 2005 Nov; 24(9):549-55. PubMed ID: 16028062 [TBL] [Abstract][Full Text] [Related]
19. Identification of a novel cytochrome P450 gene, CYP321E1 from the diamondback moth, Plutella xylostella (L.) and RNA interference to evaluate its role in chlorantraniliprole resistance. Hu Z; Lin Q; Chen H; Li Z; Yin F; Feng X Bull Entomol Res; 2014 Dec; 104(6):716-23. PubMed ID: 25208571 [TBL] [Abstract][Full Text] [Related]
20. Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C. Zhao JZ; Li YX; Collins HL; Cao J; Earle ED; Shelton AM J Econ Entomol; 2001 Dec; 94(6):1547-52. PubMed ID: 11777062 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]