These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 29963501)
21. Detection of biofilm related genes, classical enterotoxin genes and agr typing among Staphylococcus aureus isolated from bovine with subclinical mastitis in southwest of Iran. Khoramrooz SS; Mansouri F; Marashifard M; Malek Hosseini SA; Akbarian Chenarestane-Olia F; Ganavehei B; Gharibpour F; Shahbazi A; Mirzaii M; Darban-Sarokhalil D Microb Pathog; 2016 Aug; 97():45-51. PubMed ID: 27251096 [TBL] [Abstract][Full Text] [Related]
22. Biofilm production and beta-lactamic resistance in Brazilian Staphylococcus aureus isolates from bovine mastitis. Marques VF; Motta CC; Soares BD; Melo DA; Coelho SM; Coelho ID; Barbosa HS; Souza MM Braz J Microbiol; 2017; 48(1):118-124. PubMed ID: 27913076 [TBL] [Abstract][Full Text] [Related]
23. [Antiseptic effect of compound lysostaphin disinfectant and its preventive effect on infection of artificial dermis after graft on full-thickness skin defect wound in rats]. Jin J; Zhou H; Cui ZC; Wang L; Luo PF; Ji SZ; Hu XY; Ma B; Wang GY; Zhu SH; Xia ZF Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):225-232. PubMed ID: 29690741 [No Abstract] [Full Text] [Related]
24. Bacteriophage reduces biofilm of Staphylococcus aureus ex vivo isolates from chronic rhinosinusitis patients. Drilling A; Morales S; Jardeleza C; Vreugde S; Speck P; Wormald PJ Am J Rhinol Allergy; 2014; 28(1):3-11. PubMed ID: 24717868 [TBL] [Abstract][Full Text] [Related]
25. Small Molecules Produced by Commensal Staphylococcus epidermidis Disrupt Formation of Biofilms by Staphylococcus aureus. Glatthardt T; Campos JCM; Chamon RC; de Sá Coimbra TF; Rocha GA; de Melo MAF; Parente TE; Lobo LA; Antunes LCM; Dos Santos KRN; Ferreira RBR Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862721 [TBL] [Abstract][Full Text] [Related]
26. Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Roy S; Santra S; Das A; Dixith S; Sinha M; Ghatak S; Ghosh N; Banerjee P; Khanna S; Mathew-Steiner S; Ghatak PD; Blackstone BN; Powell HM; Bergdall VK; Wozniak DJ; Sen CK Ann Surg; 2020 Jun; 271(6):1174-1185. PubMed ID: 30614873 [TBL] [Abstract][Full Text] [Related]
27. Staphylococcal biofilms impair wound healing by delaying reepithelialization in a murine cutaneous wound model. Schierle CF; De la Garza M; Mustoe TA; Galiano RD Wound Repair Regen; 2009; 17(3):354-9. PubMed ID: 19660043 [TBL] [Abstract][Full Text] [Related]
28. A tractable, simplified ex vivo human skin model of wound infection. Yoon DJ; Fregoso DR; Nguyen D; Chen V; Strbo N; Fuentes JJ; Tomic-Canic M; Crawford R; Pastar I; Isseroff RR Wound Repair Regen; 2019 Jul; 27(4):421-425. PubMed ID: 30825247 [TBL] [Abstract][Full Text] [Related]
29. Increased biofilm formation by Cardoso Guimarães L; Marques de Souza B; de Oliveira Whitaker C; Abreu F; Barreto Rocha Ferreira R; Dos Santos KRN J Med Microbiol; 2021 Aug; 70(8):. PubMed ID: 34338626 [No Abstract] [Full Text] [Related]
30. A porcine model of skin wound infected with a polybacterial biofilm. Klein P; Sojka M; Kucera J; Matonohova J; Pavlik V; Nemec J; Kubickova G; Slavkovsky R; Szuszkiewicz K; Danek P; Rozkot M; Velebny V Biofouling; 2018 Feb; 34(2):226-236. PubMed ID: 29405092 [TBL] [Abstract][Full Text] [Related]
31. Biofilm inhibitory and eradicating activity of wound care products against Staphylococcus aureus and Staphylococcus epidermidis biofilms in an in vitro chronic wound model. Brackman G; De Meyer L; Nelis HJ; Coenye T J Appl Microbiol; 2013 Jun; 114(6):1833-42. PubMed ID: 23490006 [TBL] [Abstract][Full Text] [Related]
32. Development of Lorenz K; Preem L; Sagor K; Putrinš M; Tenson T; Kogermann K Mol Pharm; 2023 Feb; 20(2):1230-1246. PubMed ID: 36669095 [TBL] [Abstract][Full Text] [Related]
33. A surfactant-based wound dressing can reduce bacterial biofilms in a porcine skin explant model. Yang Q; Larose C; Della Porta AC; Schultz GS; Gibson DJ Int Wound J; 2017 Apr; 14(2):408-413. PubMed ID: 27212453 [TBL] [Abstract][Full Text] [Related]
34. Burns and biofilms: priority pathogens and in vivo models. Maslova E; Eisaiankhongi L; Sjöberg F; McCarthy RR NPJ Biofilms Microbiomes; 2021 Sep; 7(1):73. PubMed ID: 34504100 [TBL] [Abstract][Full Text] [Related]
35. Nonconformity of biofilm formation in vivo and in vitro based on Staphylococcus aureus accessory gene regulator status. Jordan SC; Hall PR; Daly SM Sci Rep; 2022 Jan; 12(1):1251. PubMed ID: 35075262 [TBL] [Abstract][Full Text] [Related]
36. Controlling methicillin resistant Staphyloccocus aureus and Pseudomonas aeruginosa wound infections with a novel biomaterial. Martineau L; Davis SC; Peng HT; Hung A J Invest Surg; 2007; 20(4):217-27. PubMed ID: 17710602 [TBL] [Abstract][Full Text] [Related]
37. SigB is a dominant regulator of virulence in Staphylococcus aureus small-colony variants. Mitchell G; Fugère A; Pépin Gaudreau K; Brouillette E; Frost EH; Cantin AM; Malouin F PLoS One; 2013; 8(5):e65018. PubMed ID: 23705029 [TBL] [Abstract][Full Text] [Related]
38. Synergistic action of phage phiIPLA-RODI and lytic protein CHAPSH3b: a combination strategy to target Staphylococcus aureus biofilms. Duarte AC; Fernández L; De Maesschalck V; Gutiérrez D; Campelo AB; Briers Y; Lavigne R; Rodríguez A; García P NPJ Biofilms Microbiomes; 2021 Apr; 7(1):39. PubMed ID: 33888725 [TBL] [Abstract][Full Text] [Related]