BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29963657)

  • 1. Regulation of microtubule dynamic instability by the carboxy-terminal tail of β-tubulin.
    Fees CP; Moore JK
    Life Sci Alliance; 2018 May; 1(2):. PubMed ID: 29963657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The negatively charged carboxy-terminal tail of β-tubulin promotes proper chromosome segregation.
    Fees CP; Aiken J; O'Toole ET; Giddings TH; Moore JK
    Mol Biol Cell; 2016 Jun; 27(11):1786-96. PubMed ID: 27053662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-wide analysis reveals novel and discrete functions for tubulin carboxy-terminal tails.
    Aiken J; Sept D; Costanzo M; Boone C; Cooper JA; Moore JK
    Curr Biol; 2014 Jun; 24(12):1295-1303. PubMed ID: 24835459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of tubulin C-terminal tail on mechanical properties of microtubule.
    Nowroz S; Nasrin SR; Kabir AMR; Yamashita T; Kusumoto T; Taira J; Tani M; Ichikawa M; Sada K; Kakugo A
    Biochem Biophys Res Commun; 2024 Apr; 706():149761. PubMed ID: 38479245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperativity between the beta-tubulin carboxy tail and the body of the molecule is required for microtubule function.
    Popodi EM; Hoyle HD; Turner FR; Raff EC
    Cell Motil Cytoskeleton; 2008 Dec; 65(12):955-63. PubMed ID: 18802936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-tubulin carboxy-terminal tails exhibit isotype-specific effects on microtubule dynamics in human gene-edited cells.
    Parker AL; Teo WS; Pandzic E; Vicente JJ; McCarroll JA; Wordeman L; Kavallaris M
    Life Sci Alliance; 2018; 1(2):. PubMed ID: 30079401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The carboxy terminus of Tub4p is required for gamma-tubulin function in budding yeast.
    Vogel J; Snyder M
    J Cell Sci; 2000 Nov; 113 Pt 21():3871-82. PubMed ID: 11034914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. αβ-Tubulin and microtubule-binding assays.
    Campbell JN; Slep KC
    Methods Mol Biol; 2011; 777():87-97. PubMed ID: 21773922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Tale of 12 Tails: Katanin Severing Activity Affected by Carboxy-Terminal Tail Sequences.
    Lindsay KA; Abdelhamid N; Kahawatte S; Dima RI; Sackett DL; Finegan TM; Ross JL
    Biomolecules; 2023 Mar; 13(4):. PubMed ID: 37189368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue-specific microtubule functions in Drosophila spermatogenesis require the beta 2-tubulin isotype-specific carboxy terminus.
    Fackenthal JD; Turner FR; Raff EC
    Dev Biol; 1993 Jul; 158(1):213-27. PubMed ID: 8330671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of microtubule dynamic instability.
    Cassimeris L
    Cell Motil Cytoskeleton; 1993; 26(4):275-81. PubMed ID: 8299143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics modeling of tubulin C-terminal tail interactions with the microtubule surface.
    Freedman H; Luchko T; Luduena RF; Tuszynski JA
    Proteins; 2011 Oct; 79(10):2968-82. PubMed ID: 21905119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold-adapted microtubules: characterization of tubulin posttranslational modifications in the Antarctic ciliate Euplotes focardii.
    Pucciarelli S; Ballarini P; Miceli C
    Cell Motil Cytoskeleton; 1997; 38(4):329-40. PubMed ID: 9415375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau.
    Drechsel DN; Hyman AA; Cobb MH; Kirschner MW
    Mol Biol Cell; 1992 Oct; 3(10):1141-54. PubMed ID: 1421571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microtubule-binding protein FOR20 promotes microtubule depolymerization and cell migration.
    Feng S; Song Y; Shen M; Xie S; Li W; Lu Y; Yang Y; Ou G; Zhou J; Wang F; Liu W; Yan X; Liang X; Zhou T
    Cell Discov; 2017; 3():17032. PubMed ID: 28884019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into cytoskeletal behavior from computational modeling of dynamic microtubules in a cell-like environment.
    Gregoretti IV; Margolin G; Alber MS; Goodson HV
    J Cell Sci; 2006 Nov; 119(Pt 22):4781-8. PubMed ID: 17093268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unambiguous classification of microtubule-ends in vitro: dynamic properties of the plus- and minus-ends.
    Kowalski RJ; Williams RC
    Cell Motil Cytoskeleton; 1993; 26(4):282-90. PubMed ID: 8299144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stathmin family protein SCG10 differentially regulates the plus and minus end dynamics of microtubules at steady state in vitro: implications for its role in neurite outgrowth.
    Manna T; Grenningloh G; Miller HP; Wilson L
    Biochemistry; 2007 Mar; 46(11):3543-52. PubMed ID: 17311410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microtubule dynamic instability does not result from stabilization of microtubules by tubulin-GDP-Pi subunits.
    Caplow M; Shanks J
    Biochemistry; 1998 Sep; 37(37):12994-3002. PubMed ID: 9737880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of αβ-tubulin curvature to microtubule dynamics.
    Brouhard GJ; Rice LM
    J Cell Biol; 2014 Nov; 207(3):323-34. PubMed ID: 25385183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.