These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2996366)

  • 1. Alpha and beta types of carbonic anhydrase-rich cells in turtle bladder.
    Stetson DL; Steinmetz PR
    Am J Physiol; 1985 Oct; 249(4 Pt 2):F553-65. PubMed ID: 2996366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular organization of urinary acidification.
    Steinmetz PR
    Am J Physiol; 1986 Aug; 251(2 Pt 2):F173-87. PubMed ID: 2426975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turtle urinary bladder: regulation of ion transport by dynamic changes in plasma membrane area.
    Stetson DL
    Am J Physiol; 1989 Nov; 257(5 Pt 2):R973-81. PubMed ID: 2511770
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonic anhydrase and proton secretion in turtle bladder mitochondrial-rich cells.
    Fritsche C; Kleinman JG; Bain JL; Heinen RR; Riley DA
    Am J Physiol; 1991 Mar; 260(3 Pt 2):F443-58. PubMed ID: 1705757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra- and submembrane particle densities during CO2 stimulation of H+ secretion in turtle bladder.
    Kohn OF; Hand AR; Mitchell PP; Steinmetz PR
    Am J Physiol; 1997 Apr; 272(4 Pt 2):F491-7. PubMed ID: 9140050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation between apical intramembrane particles and H+ secretion rates during CO2 stimulation in turtle bladder.
    Stetson DL; Steinmetz PR
    Pflugers Arch; 1986; 407 Suppl 2():S80-4. PubMed ID: 3103096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface characteristics of carbonic-anhydrase-rich cells in turtle urinary bladder.
    Husted RF; Mueller AL; Kessel RG; Steinmetz PR
    Kidney Int; 1981 Apr; 19(4):491-502. PubMed ID: 6787298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrogenic proton transport by intercalated cells of tight urinary epithelia.
    Steinmetz PR
    Ciba Found Symp; 1988; 139():122-38. PubMed ID: 2462477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scales of urine acidification: apical membrane-associated particles in turtle bladder.
    Steinmetz PR; Kohn OF; Hand AR
    Kidney Int; 1996 Jun; 49(6):1655-9. PubMed ID: 8743471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonic anhydrase in turtle bladder mitochondrial-rich luminal and subluminal cells.
    Fritsche C; Kleinman JG; Bain JL; Heinen RR; Riley DA
    Am J Physiol; 1991 Mar; 260(3 Pt 2):F431-42. PubMed ID: 1705756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the novel membrane-coating material in proton-secreting epithelial cells and identification as an H+ATPase.
    Brown D; Gluck S; Hartwig J
    J Cell Biol; 1987 Oct; 105(4):1637-48. PubMed ID: 2889740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NBD-taurine uptake by alpha-type carbonic anhydrase cells of turtle bladder.
    Palmisano J; Mitchell PP; Steinmetz PR
    Am J Physiol; 1989 Dec; 257(6 Pt 2):F1015-20. PubMed ID: 2513726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Freeze-fracture study of the turtle lung. 2. Rod-shaped particles in the plasma membrane of a mitochondria-rich pneumocyte in Pseudemys (Chrysemys) scripta.
    Bartels H; Welsch U
    Cell Tissue Res; 1984; 236(2):453-7. PubMed ID: 6733771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbonic anhydrase function and the epithelial organization of H+ secretion in turtle urinary bladder.
    Schwartz JH; Rosen S; Steinmetz PR
    J Clin Invest; 1972 Oct; 51(10):2653-62. PubMed ID: 4626848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of membrane fusion in CO2 stimulation of proton secretion by turtle bladder.
    Stetson DL; Steinmetz PR
    Am J Physiol; 1983 Jul; 245(1):C113-20. PubMed ID: 6408926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane specialization in the rat epididymis. I. Rod-shaped intramembrane particles in the apical (mitochondria-rich) cell.
    Brown D; Montesano R
    J Cell Sci; 1980 Oct; 45():187-98. PubMed ID: 6780578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H+ current response to CO2 and carbonic anhydrase inhibition in turtle bladder.
    Schwartz JH
    Am J Physiol; 1976 Aug; 231(2):565-72. PubMed ID: 8996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in membrane conductances and areas associated with bicarbonate secretion in turtle bladder.
    Rich A; Dixon TE; Clausen C
    J Membr Biol; 1990 Feb; 113(3):211-9. PubMed ID: 1692340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Electron microscopic research on the mitochondria-rich bladder cells of the frog].
    Snigirevskaia ES; Kever LV; Komissarchik IaIu
    Tsitologiia; 1989 Sep; 31(9):1020-8. PubMed ID: 2623766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal tubule of dogfish, Scyliorhinus caniculus: a comprehensive study of structure with emphasis on intramembrane particles and immunoreactivity for H(+)-K(+)-adenosine triphosphatase.
    Hentschel H; Mähler S; Herter P; Elger M
    Anat Rec; 1993 Apr; 235(4):511-32. PubMed ID: 8385422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.