BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 29963745)

  • 1. Acceleration of global vegetation greenup from combined effects of climate change and human land management.
    Wang L; Tian F; Wang Y; Wu Z; Schurgers G; Fensholt R
    Glob Chang Biol; 2018 Nov; 24(11):5484-5499. PubMed ID: 29963745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Climate Controls on the Spatial Variability of Vegetation Greenup Rate across Ecosystems in Northern Hemisphere.
    Zheng Z
    Plants (Basel); 2022 Nov; 11(21):. PubMed ID: 36365427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013.
    Liu L; Zhang X; Donnelly A; Liu X
    Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined effects of climate and land management on watershed vegetation dynamics in an arid environment.
    Liu P; Hao L; Pan C; Zhou D; Liu Y; Sun G
    Sci Total Environ; 2017 Jul; 589():73-88. PubMed ID: 28264774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attribution of seasonal leaf area index trends in the northern latitudes with "optimally" integrated ecosystem models.
    Zhu Z; Piao S; Lian X; Myneni RB; Peng S; Yang H
    Glob Chang Biol; 2017 Nov; 23(11):4798-4813. PubMed ID: 28417528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A global increase in tree cover extends the growing season length as observed from satellite records.
    Fang Z; Brandt M; Wang L; Fensholt R
    Sci Total Environ; 2022 Feb; 806(Pt 3):151205. PubMed ID: 34710418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revegetation affects the response of land surface phenology to climate in Loess Plateau, China.
    Wang L; She D; Xia J; Meng L; Li L
    Sci Total Environ; 2023 Feb; 860():160383. PubMed ID: 36414058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Productivity and phenological responses of natural vegetation to present and future inter-annual climate variability across semi-arid river basins in Chile.
    Glade FE; Miranda MD; Meza FJ; van Leeuwen WJ
    Environ Monit Assess; 2016 Dec; 188(12):676. PubMed ID: 27858259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive land cover change across Arctic-Boreal Northwestern North America from disturbance and climate forcing.
    Wang JA; Sulla-Menashe D; Woodcock CE; Sonnentag O; Keeling RF; Friedl MA
    Glob Chang Biol; 2020 Feb; 26(2):807-822. PubMed ID: 31437337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Varying effects of tree cover on relationships between satellite-observed vegetation greenup date and spring temperature across Eurasian boreal forests.
    Ding C; Meng Y; Huang W; Xie Q
    Sci Total Environ; 2023 Nov; 899():165650. PubMed ID: 37474076
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia.
    Suepa T; Qi J; Lawawirojwong S; Messina JP
    Environ Res; 2016 May; 147():621-9. PubMed ID: 26922262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote Sensing Monitoring and Assessment of Global Vegetation Status and Changes during 2016-2020.
    Li L; Xin X; Zhao J; Yang A; Wu S; Zhang H; Yu S
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divergent phenological response to hydroclimate variability in forested mountain watersheds.
    Hwang T; Band LE; Miniat CF; Song C; Bolstad PV; Vose JM; Love JP
    Glob Chang Biol; 2014 Aug; 20(8):2580-95. PubMed ID: 24677382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers.
    Mishra NB; Mainali KP
    Sci Total Environ; 2017 Jun; 587-588():326-339. PubMed ID: 28245933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of temperature variability and extremes on spring phenology across the contiguous United States from 1982 to 2016.
    Liu L; Zhang X
    Sci Rep; 2020 Oct; 10(1):17952. PubMed ID: 33087789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Urban spring phenology in the middle temperate zone of China: dynamics and influence factors.
    Liang S; Shi P; Li H
    Int J Biometeorol; 2016 Apr; 60(4):531-44. PubMed ID: 26272052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon response of tundra ecosystems to advancing greenup and snowmelt in Alaska.
    Kim J; Kim Y; Zona D; Oechel W; Park SJ; Lee BY; Yi Y; Erb A; Schaaf CL
    Nat Commun; 2021 Nov; 12(1):6879. PubMed ID: 34824215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Codominant water control on global interannual variability and trends in land surface phenology and greenness.
    Forkel M; Migliavacca M; Thonicke K; Reichstein M; Schaphoff S; Weber U; Carvalhais N
    Glob Chang Biol; 2015 Sep; 21(9):3414-35. PubMed ID: 25882036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of winter precipitation on spring phenology in boreal forests.
    Yun J; Jeong SJ; Ho CH; Park CE; Park H; Kim J
    Glob Chang Biol; 2018 Nov; 24(11):5176-5187. PubMed ID: 30067888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.
    Krishnaswamy J; John R; Joseph S
    Glob Chang Biol; 2014 Jan; 20(1):203-15. PubMed ID: 23966269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.